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"Abstract
This is the /inal regort on RADC Project F30602-80-C0022.

Work on Ada advanced error detection has éncompasscd three areas of research and development.

1. Techniques of detecting common runtime errors in sequennal Ada &t compile-time using
veritication techniques.

2. High level annotation languages.

3. Runtime detection of deadness errors in Ada tasking.
Interim Report 1 deait with work on runtime detection of common errors.

Interim Report 2 contains the project work on a preliminary design study for a high level annotation
language for Ada.

This final report deals with our work on runtime detection of errors in Ada Tasking programs.

This report contains a preface summarizing briefly the work in the first two interim reports. The report
then deals with the resuils and progress of our work on tasking error detection. This work has
resulted in a working prototype implementation of a system for Jdetecting and diagnosing tasking
errors. Source code of this implementation has been supplied to RADC.

This systam is the most promising approach to detection of deadness errors and debugging of Aca
tasiing programs developed so far. Its application to evasive action programming as a standard
techniique for large Ada distributed systems maerits turther study. It is our opinion that it this research
and development is pursued along the direction taken in this project, runtime monitoring systems of
production quality standards for analysis and debugging of Ada tasking programs can be available for
incorporation into Ada Program Support Environments in the next 2 - 4 years, depending on the level
of effort. Such production quality tools would essentigily be developments of the prototype
experimental system developed under this cantract and described in this report.
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Ada Advanced Error Detector .

Final Report

November 4, 1979 ta November 8, 1982
F30602-80-C-0022

Work on Ada advanced error detection has encompassed three areas of ressarch and development.

1. Techniques of detecting common runtime errors in sequential Ada at compile-time using
verification techniques.

2 High level annotation languages.
3. Runtime detaction of deadness errors in Ada tasking.

Area 1 was our initial research focus during the first year. This research was based on previous work
on the compile-time detection of common errors in Pascal [German 81, Pascal Verifier 79]. This
previous work was judged to be a good starting point for the effort since the previous work applied to
all Algol-like languages, including the sequential subset of Ada, and therefore promised quick results
in terms of application to Ada. Common errors whose presence can be detected at compile-time
include accessing of unitialized variables, array indexing errors, sub-range errors, etc. The
techniques deveioped require use cf advanced mathematical verification methods such as those
implemented in [Pascal Verifier 78]. The advantages resuiting are quantified in terms of runtime
efficiency of the compiled Ada program gained by suppression of unnecessary runtime checking.
The results and details of this part of the ressarch are treated in detail in our Interim Raport No. 1
dated 1 February 1981.

The ability to detect errors in the semantics of an Ada program itself, as opposed to a simple common
error due to transgressing the general semantics of the Ada language, requires development of a
specification language for Ada. Such a language must provide the programmer with sufficiently
powerful facilities to express specifications for Ada programs within a syntactic and semantic
framework that matches Ada itseif where possibie. Given both formal specification and Ada laxt, it is
then possible to construct automated interactive debugging tools such as verifiers, test case
generators and symbolic executors, for detecting inconsistencies between the specification and code
of an Ada program. The major probiem lay first in the lack of an adequate specification language for
Ada programs. Previous specification languages, e.g. for Pascal, were judged inadeguate for
application to Ada,

Part of our second year effort was therefore devoted to a design study for a high level specification
language called Anna for expressing formal specifications of Ada programs in a machine processabie
form. In Anna formal comments are written with the same precision as programs, and included as an
extension of Ada programs. Formal comments are either virtual Ada text or annotations. Since
annotations have a well-defined syntactical structure in ANNotated Ada. they can be processed by
tools such as verifiers, optimizers, documentation systems and support tools for program
deveiopment.

In this preliminary dnign. we had four principal considerations.
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1. Constructing annotations should be easy for the Ada programmer, and should depend as
much as possible on notation and concepts of Ada.

2. Anna should possess language features that are widely used in the specification and
3 documentation of programs.

. 3. Anna should provide a formal framework within which different theories of specifying
programs may be applied to Ada.

4. Annotations should be equally well suited for ditferent possible applications, not only for
formal verification by aiso for specification of program parts during program design and
development.

The Anna design requirements place heavy emphasis on developing the ways in which Anna can be’
used for specification and how it may be extended in the future. As a consequence of the choice of a
first order annotation language, different theories and techniques of specifying programs may be
applied using Anna. For example, previous work on assertional sgecification of Pascal programs
[Hoare 69, Hoare,Wirth 73, Luckham,Karp 79, Pascal Verifier 79] may be formulated in Anna since
any programming concept may be defined by the first order axiomatic method (axioms are simply
stated as annctations) and used in annotations. It is also clear that the algebraic method of specifying
abstract data types may be apglied to packages in Anna.

The preliminary Anna design (Interim Report No. 2) is incomplets, and may require further extensions.
Firat, some possibly useful specification concepts are not provided. Consider for instance modal
operators. These have to be defined axiomatically at the moment, but it may be useful to include them
among the basic predefined operators in later versions. Secondly, Anna does not include tasking. An
extension to inciude task annotations may require the introduction of new predefined attributes, for
exampie task type collections, and the semantics of task annotations will have to be defined.

The Anna specification language is still under development, together with the methodology for
compiling formal Anna specifications into Ada runtime checking code. Interim Report No. 2 dated 1
February 1982 gives a preliminary design for Anna developed under this effort. which formed the
‘ basis for feasibility studies, and experimentation preliminary to undertaking a more complete design
E effort.

As pointed out in Interim Report No. 2, the state of basic research concerning errors specific to
parallelism in multiprocessing programs has not progressed to a stage where it is practicable to
design a formal specification language for Ada tasking. The major portion of our effort related to
detection of Ada tasking errors has thersfore concentrated on runtime monitoring techniques. Our
research and development efforts in this area have been highly successful and promising.

These errors are the result of a breakdown in the communication between parallel threads of control

in a system. As a consequence, certain threads of control (or sometimes all threads in an entire

system) cannot proceed with their computations and hence become "dead”. Ceadness errors in :
general occur unpredictably. Whether or not a possible deadness error in a system will occur curing i
gystem operation may depend on a muititude of external factors, e.g. compilation techniques. runtime
_ scheduling, 170 processing times and external interrupts. They are often extremely difficuit to
1 reproduce and hence to locate by current testing methods.

t ] Errors caused by failure in the parallelism of a computational system are called deadness errors.
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During the second and third years of this research, our major effort has concentrated on development
of technology and tools for detection of deadness errors in Ada tasking. Our focus was to provide
toois for instrumenting tasking programs so that deadness errors could be detected and diagnostics
supplied to the programmaer for debugging purposes. This effort has resulted in a significant
breakthrough in the area of advanced error detectors for parallel processing.

i). A transformational method for instrumenting Ada source text in order to monitor for deadness
errors in tasking was defined. This method applied to errors due to Ada rendezvous failure. A
preliminary paper was published in the 1982 Ada Symposium, [German,Helmbold,Luckham 82].

(7). An abstract method of representing Ada task rendezvous states and detecting certain kinds of
deadness errors was aiso developed and published in the 1982 Ada Symposium,
[German,Heimbold,Luckham 82].

{iii). The transformational instrumentation method was extended significantly to enabile detection of
deadness errors due to termination failures in Ada tasking. This entailed monitoring of task
dependency information (see this final report).

{iv). The transformational instrumentation method was extended significantly to enable monitoring of
information for diagnostic description of deadness errors sufficient to enabie the programmer to
locate the scurcs of an error in the Ada text (see this final report).

{v.. The more developed transformational- instrumentaticn was implementad as a Snobol
preprocessor for Ada source text (see this final report, Chapter 4).

{vi. A method of monitoring tasking information supplied by irstrumented Ada programs (i.e.,
programs to which the Snacbol preprocessor has been applied) and detecting errors and
supplying diagnostics was developed and implemented in Ada. This Ada prcgram, consisting of
a package and a task is referred to as the runtime monitor (described in this final rag °nt,
Chapter 3).

(vii). Testing of our runtime monitoring system (preprocessor and monitor) on Ada programs led to an
experimental development of it for application to evasive action programming (see this report).

{viii). The monitoring system was demonstrated at Stanford University to RADC regresentatives in 13th
and 14th July 1982, '

{ix). Snobol source text of the preprocessor and Ada source text of the runtime monitor were
supplied via ARPA net to the RADC project monitor on December 1982.

This final report contains a theory of deadness errors upon which our runtime detection methods are
based. an overview of our prototype runtime monitor and preprocessor designs, and examples of
experiments. This system is the most promising approach to detection of deadness errors and
debugging of Ada tasking programs developed so far. Its application to evasive action programming
as a standard technique for !arge Ada distributed systems merits further study. [t is our opinion that if
this research and development is pursued along the direction taken in this project, runtime
monitoring systems of production quality standards for analysis and debugging of Ada tasking
programs can be availabie for incorporation into Ada Program Support Environments in the next 2 - 4
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years, depending on the level of effort. Such production quality tools wouid essentially be
developments of the prototype experimental system developed under this contract and described in
this report.

Professor David C. Luckham
Principle Investigator




1. INTRODUCTION

Errors caused by failure in the parallelism of a computational system are called deadness errors.
These errors are the result of a breakdown in the communication between parallel threads of control

" in a system. As a consequence, certain threads of control (or sometimes all threads in an entire
system) cannot proceed with their computations and hence become “dead”. Deadness errors in
general occur unpredictably. Whether or not a possible deadness error in a system will occur during
system operation may depend on a multitude of external tactors, e.g. compilation techniques, runtime
scheduling, 170 processing times and external interrupts. They are often extremely difficuit to
reproduce and hence to locate by current testing methods.

Deadness errors have been described in the past by concepts such as deadlock, blocking, and
starvation. These early concepts provided meaningful classification of certain kinds of errors that
could occur in 1960's vintage parallel (or pseudo parallel) systems such as simple operating systems.
However they are too vague for describing the kinds of deadness error that can occur in a parallel
system implemented using the multi-tasking facilities of Ada. For example. if a system uses dynamic
: activation of tasks, the number of active tasks at any time will be a function of what the system is
' doing, and may not be determinable n advance. Names can only be assignec dynamcally to new
tasks. In such cases, a runtime diagnostic such as “tasks 25, 37, and 121 have geadlocked™ will not
be very helpful because the dynamically assigned names. 25, 37, 121 have no meaning related tc the
system source text. Additional descriptive information such as the Ada types of tasiks must be
provided. Before we can expect to develop an ability to deal with deadness in future parallei systems.
we must first provide adequate methods of classification and description.

Sl i

in order to deal with deadness in Ada or other languages of.similar complexity. it is useful to civide the
probiem into three sub-problems: (i) detection, (i) description, and (iii) avoidance. Detection invoives
recognizing a dead state, and usually requires less information than description. Description involves
providing sufficient information to locate the source of an error in Ada text. Avoidance involves both
style guidelines for constructing error-iree systems, and programming techniques ic: evasion of
imminent errors at runtime.

In this naper we investigate the application of runtime monitoring methods to these thrze sub-
problems. Alternative methods of eliminating deadness errors based on static analysis at compile
time are not addressed in this paper. So far, the known static analysis methods are very difficult and
time-consuming [Taylor 82].

In Chapter 2 a set of concepts for classifying deadness errors in Ada tasking is defined. These
concepts are derived from the informal semantics of Ada tasking given in [ichbiah et al. 82]. They
form a complete set in the sense that an operational description of Ada tasking can be given using
only these concepts. The description of our implementation in subsequent chapters is based on
these concepts. However, we feel that our present set of concepts should be treated as tentative. itis
possible to define other complete sets of concepts. Alternative concepts with advantages over the
present set may emerge as experience in this area accumulates.

Our monitor system has two parts: (1) a separataly compiled runtime monitor written in Ada. and (2) a
preprocessor that transforms Ada source text <o that necessary descriptive data is communicated to
the monitor at runtime. The result of applving the pre-processor to any legal Ada program is a
modified program which is again a legal Ada program and contains the monitor. This monitor system
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is intended to monitor sufficient information about tasking activities at runtime to (i) detect a very
broad class of deadnass errors, and (i) provide descriptive information about a dead state when it is
certain that the state will occur, and prior to that state actually occurring. Some of the basic
transformations and an abstract monitoring method were previously described in
(German,Heimbold,Luckham 82]. This established the essential ideas behind our nmplementatnon but
dealt only with detection of deadness and applied to a more limited class of errors.

An Ada implementation of the runtimo monitoring system is described in Chapter 3. This description
encompasses (a) the kind of descriptive data about tasking states that is monitored, (b)
representation of the descriptions and processing to detect errors, and (c) structural design of the
monitor. The monitored data must be sufficient both for detection of deadness and for providing
diagnostics. The actual monitor data structures and procedures must correctly implement
representations of scheduling states (as defined in Chapter 2); any monitor procedure must always
terminate, preferably as quickly as possibie. Structured design of the monitor i8 an important
consideration both for runtime efficiency and to reduce recompilation if the monitor system is altered
for a special application.

Ci.. oter 4 describes the preprocessing transformations applied to Ada source text. The description
deais with the complete set of transformations that are currently implemented. These transformations
ensure that the mcnitored program will pass sufficient information about intencded tasking operations
(initiation, rendezvous, termination, etc.) to the monitor to enable it to detect a wide class of deadness
errors, including, e.g., deadness due to inability of dependent tasks to terminate. The fine details are
complex; our description is therefore presented informally and relias on illustrative examples. The
preprocessor is implemented in SNOBOL.

Chapter 5 deais with the correctness of our method. Sy this we mean that the addition of the monitor
does not introduce new deadness errors. and that the monitor correctly describes an error when it is
certain that the error will occur if the computation continues normally. Discussion of these issues is
informal and proofs are outlined. Our intention here is to indicate how a formal proof can be given; a
fuily tormal treatment is beyond the scope of this paper.

The monitoring system may be used not only for recognition of errcrs but also for evasive action
programming. Essentially, the monitor "knows" a deadness error is certain to happen (if the
computation continues normally) before it occurs. Warnings (e.g. Ada exceptions) may therefore be
propagated to the monitored program before the error occurs, thus enabling it to evade the error by
taking some abnormal course of action, Such evasion may be temporary in that the error may
become imminent again, but the program can continue useful operation for a time. It may then have
to evade again, and so on. These evasive action techniques need to be investigated and developed
since they represent a very useful method of keeping large multi-tasking programs in operation.
Eventually one would hope to be able to determine at compile time that such programs are free of
dea.ness errors, but until the necessary theory of static detection is deveioped. evasive action may
become just as important a way of dealing with deadness errors as testing methods are for most other
kinds of errors today. Indeed, it a system has to deal with unreliable elements, as happens in many
practical applications, evasive action techniques couid become a standard programming practice.

Some techniques for evasive action programming are given in Chapter 6. These are very medest and
represent just a beginning. Examples of monitoring experiments for debugging and evasive action
are given in Chapter 7.




ey

— — E—

f

The current experimental monitor is programmed in Ada and compiled using the Adam compiter at
Stanford [Luckham et al. ADAM 81]. Since Adam does not support all of Ada82, some parts of the
monitor implementation have used circuitous techniques. This is especially evident in our
implementation of evasive action; wamings are impiemented by means of extra parameters of the
monitor entries instead of exceptions because Adam does not support exception propagation during
task rendezvous.

There is a fundamental philcsophical question as to whether such monitoring should be part of the
runtime supervisor package or part of the Ada source text. Basically, it is too early in the development
of our understanding of deadness errors. to take a stand on this issue. Both approaches have
advantages. Supervisor monitoring can make use of scheduling information already present in the
supervisor and therefore does not duplicate this information at runtime. However, perhaps standard
runtime supervisory packages should not be burdened by requirements to produce debugging
information at present, especially since we do not yet know what information is adequate in general.
Source code monitoring has many advantages such as the ability to tailor detection information and
warnings to a particular application program. The main disadvantage of this approach lies in the lack
of a fundamental task identifier type in Ada itself, but this is a problem in programming other resource
scheduling applications in Ada too [Luckham et al.,ADAM 81].




2. DEFINITIONS

2.1 TASK STATUSES

According to the semantics of tasking [Ichbiah et al. 82] a task may be in any one of the following
statuses; a status has information associated with it:

1 Runnlng-ataskin mlsstatusmayborun. This is the only status in which a task may run.

2 Accepting: a task t is waiting for an entry call at an accept statement or at a select
statement that does not have an eise clause, terminate alternative, or a delay
aiternative. The set of entries being waited for (i.e., the entry of the accept or those
mwmmmmmmdmmbmmm
accepting status of t.

3. Select-terminate: a task t is at a select statement with a terminate alternative; the set
of entries corresponding to open accept alternatives and the set of tasks dependent on t
are associated with the select-terminate status of t.

4. Calling: task t has issued an entry call, s.e, to task s, which is neither conditional nor
timed. The task s and the entry e are associated with the calling status of t.

5. Block-waiting: task t has reached the end of an inner block or subprogram and is
waiting for the tasks dependent on the inner block to terminate; the set of tasks
dependent on the block or subprogram is associated with the biock -waiting status of t.

8. Completed: task t has completed. The set of tasks dependent on t is associated with
the compieted status of t.

7. Terminated: task t is terminated. No additional information is associated with this
status. '

8. Select-Dependentis-Completed: task t is at a select statement with an open terminate
aiternative and all dependent tasks have reached either terminate status or Select-
Dependents-Compieted status. The set of entries corresponding to open aiternatives of
the select statement is associated with this status.

Blocked: A task in any of the statuses 2 - 8 is said to be blocked.

This set of statuses and associated information is sufficient to describe that part of the Ada semantics
of task rendezvous that determines the scheduilability of a task. Such a description may be given by
means of a status change diagram indicating how the semantics of rendezvous determines the status
changes of a task. Some status changes of task t are direct in the sense that the action of t itself
causes the change; other changes of t are indirect in the sense that they are caused by the action of
another task.
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Direct Status Changes:
running = calling

running == accepting
ruaning = select_terminate
running = block_waiting
running = completed
Iindirect Changes:
€alling = running
running => calling
accepting = cunning
select_terminate =+ running
block_wait - =+ punaing
select_terminate = gselect_dependents_completed
select_dependants_completed — terminated
select_dependents_completed —» running
completed . =» terminated
Notes:

A task executing a delay statement is in status running. The indirect status change from accepting to
running occurs when the entry call is issued rather than when the rendezvous is initiated. A task
changes from status running to calling after having issued a conditional or timed entry call only if the
call is accepted (this status change is therefore indirect). A task which executes a select statement
will usually change from running to accepting. A task which executes the eise part (or delay
alternative) of a select statement remains in status running. ’

2.2 SCHEDULING STATES AND DEADNESS ERRORS

For a given input a program P may have many different possible computations. Each possible
computation is the result of a legal Ada scheduling of the runnable tasks. Here, the word
"scheduling” is used in a very broad sense to reflect simply the order in which changes of status
aoccur among the individuai tasks of P.Different orders may resuit from different scheduling
aigorithms for muitiplexing tasks on a single CPU, or- from differing speeds of CPU's in a
multiprocessor system. The details of the underlying scheduling do not concern us in this paper. We
sre concemed only with cbservabie differences in the sequence of status changes. It shouid be
noted that different schedulings may result in different outputs from the computation, e.g. in the case
where P is monitoring its own status changes.

" Task |dentifiers.Each task that is activated during a computation of program P is assigned a unique

name called its identitier. it is assumaed that a task can access its own identifier and the identifier of
any task that is visible to it.

Task-Status Pairs. A task-staius pair is an ordered pair consisting of a task identifier as first
element and a status as second element (notation: <t,s>).

Scheduling States. A scheduling state of a program P is a set of task-status pairs such that each
task of P is the first element of exactly one pair. If <t,s> is a member of state S, then task t has status
sinS.
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Execution. An execution of P is a sequence of pairs consisting of a task identifier and a sequénca of
simple statements such that:

1. the task identifier of the first pair identifies the mainr program;

2. the task identifier of the nth pair <t , c,> has status running as a result of the execution
of the statements in the previous pairs by the named threads of control;

3. As a consequence of the execution of the statements in the previous pairs in the
sequence by the named threads of control, t, may legally execute the simple statements
inc, in that order, mdihmdoanotchangounﬁl possibly after the last statement of
°..-,

Notes: :
Exscutions correspond maomputatiomofPonadnthPU An execution is an interleaving of the
sequences of simple statements executed by the running threads of control; it is convenient to
consider end as a simple statement in the definition of execution.
Statements appear in executions in positions corresponding to their normal termination. For
example, if task t calls procedure p, then the simple statements exacuted during p's execution will
appear in an execution pair for t before the procedure cail. Since a change of status from running
occurs during execution of a tasking statement, and possibly back to running again at the
ccmpietion of that statement, tasking statements wiil appear at the beginning of sequences in pairs.
The subsequence of pairs representing a single task's executions contains simple statements that the
task must execute in a (according to Ada semantics) legal order of sxecution.
An execution can be constructed from an actual camputation in the obvious way by wrmng down the
identifier of the running thread of controi at any time followed by the simple statements that it
executes. Conversely any execution corresponds t0 an actual computation on a single CPU under
some scheduling. Since the samantics of Ada is independent of the number of CPU’s. definitions
based on this imposed linearization of tasking computations are valid generally for any mathod of
gcheduling computations.

The concept of execution described here can be given a formal definition in terms of transition rules

similar to the opsrational semantics for Ada in[Li 82]. We may therefors use the notions

“computation” and "exscution” mtorchanqeably in the following discussion.

Scheduling. A achoduling is an activity which may chango the execution sequence associated with a
computation-of P given a fixed input.

Notes:

This concept of scheduling is very broad. it includes the implementation of the select statement,
relative speeds of processors, computations of the runtime host environment, 170, and any other
activity that may change the order in which different threacls of control change statuses.

A program P, given a fixed input, may have many diflerent possible computations, each of which is
the resuit of a change of scheduling.

Sequences of Scheduling States A computation of program P has an associated linear sequence
of scheduling states. All tagks are activated in running status. Each new states in the saquence resuits
from the pravious state by a status change by one task. Simultaneous status changes are ordered
arbitrarily; an indirect status change follows the status change of the task causing it.

Deadness Error. A deadness error is & scheduling state occurring in a computation of P in which a
subset of tasks are in biocked statuses but not terminated, and there can be no subsequent
scheduling state in a possible continuation of that computation of P from that state in which the
statuges of the subset have changed.

- e L e e e m—
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Potohtm Deadness Error. A program P has a potential deadness error if there is an input and a
possible computation such that the associated sequence of states contains that error.

Notes; :

A blocked state is a scheduling state in which no task has status running, no (indirect) status changes
are possible, and not every task has status terminated.

A deadlocked state is one in which a subset of tasks are ail in status calling and the calls are to entries
of members of the subset. L

Deadness errors include giobal blocking in which all tasks are blocked, circular deadiock, and errors
arising when subsets of tasks block. implementation dependent errors, e.g. failure of an entry call to
be serviced due to a particular implementation of arbitrary ssiection (starvation), are not inciuded.

2.3 MONITORED PROGRAMS

Runtime monitoring for deadness errors invoives adding a monitoring task M to a given program
P. The text of P is transformed so that tasks have unique identifiers and may identify each other and
communicate status changes to M. The resulting program, P’, is called a monitored program. It is
important to establish that the addition of M to P (to form P’} does not change the set of potential
deadness errors of P, :

The next set of definitions are made in order to establish a sense in which two pregrams P and P’ ¢an
be said to possess the same potential deadness errors. As a special casa we define what is meant by
saying that the same deadness error occurs in two distinct computations of P. These definitions are
complicated by the possible dynamic creation of tasks in Ada and corresponding dynamic allocation
of task identifiers.

correspondence: We assume there is a textual corrospondence between P and P’ such that:

1. every declaration in P corresponds to a declaration in P’ of the same kind,

2. every object in P corresponds to an object (or component object) in P' of the same kind,

3. every statement in P corresponds to a statement in P’ of the same kind,

4. the correspondencae is consistent, i.e., declarations and statements in a program unit U in :
P correspond to declarations and statements in the corresponding program unit U' in P'. H

Notes:

Any object declared in P corresponds to an object declared in P* of the same kind, in particular tasks
correspond to tasks. However, not every declaration or statement in P’ need have a correspondence
inP.

Corresponding Executions. Let E and E' be executions of P and P’ respectively. Assume thereis a
textual correspondence between P and P'. Then E and E’ correspond it all task-code pairs of E can
be placed in a correspondence with task-code pairs in €' according to the following inductive test:
Suppose that the first n pairs of E correspond to pairs (in the same order) among the first m (m > n)
pairs of E', and that there is a one~one correspondence between ail the task identifiers that have
occurred 30 far in E and a subset of those in E'. Let the nth. and mth. pairs be <t , ¢ > in E and LRy
Cy>inE'.

1. if all the statements of Cq 870 in (1-1) correspondence (under the textual reiationship
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between P and P') with the statsments of c_ in the same order, then t and t  must
correspond. If neither yet corresponds to any task, they are placed in carrespondence (in
E and E'), and the test proceeds to the next pairs in Eand E";

2.1t no statement in c has a textually corresponding statement in P then <t cn> is
compared with the next pairin E';

3. If neither of the first two cases holds then the correspondence tast fails.

Notes:

it two executions E and E’ correspond then the task identifiers in E are in one=-one correspondence
with a subset of the task identifiers in E'. If t in E corresponds with ' in € then t executes code
corresponding to some of the code executed by t', possibly interspersed with code in E' which has no
correspondence in E. Thus, in a general sense corresponding task identifiers are names for threads
of control that execute the same subcomputations.(restricted to statements of P). E' may have tasks
that do not correspond to any task in E; this is a consequence of the assumption that the textual

correspondence between P and P' is "into”, Le., P’ may be "bigger" than P.

Equivalent Scheduling States. If E and E' are corresponding executions of P and P’ then
scheduling state S of E is equivalent to a scheduling state S' of E' if for every task -status pair <t, &>
in S the task-status pair <t', 8> is in §' where t and t’' correspond in E and E', and all other tasks of S'
are tlocked.

Same Potential Errors. P and P' have the same potential deadness errors if for every potential
deadness error of P occurring in execution E, there is a corresponding execution E’ of P’ in which an
equivalent deadness error occurs, and conversely.

Notes:
"Conversely” means the following: if a deadness error S' occurs in execution E' of P’ then there is an
execution E of P such that E and E' correspond and a deadness error S equivaient to §' occurs in E.

Non lntoffcrohco. A task M is said not to interfere with a program P it

1. its addition to P forms. a legal Ada program P’ and defines a textual correspondence
between P and P,
2..P and P’ have the same set of potential deadness errors.

Notes:

M does not interfere with P if and only it its (legal) addition to P does not introduce any new potential
deadness errors NOr remove any potential deadness errors.

The definition of non-interference is weak in the sense that P and P’ are not required to compute the
same values or to be equivalent in any of the usual senses. The terminology "addition to P" is left
undefined; it may invoive changes to the text of P as well as the addition of the text of M; it is required
that the "addition” sets up a textual correspondencs between P and P'.
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3. DEADNESS MONITOR.

The monitor detects deadness errors based on information received from the preprocessed program.
In our implementation this information consists of changes of statuses and associated information
(see Section 2). The monitor maintains, throughout the execution of the modified program, a
*picture” of the program’s scheduling stale. This picture is generally updated and checked for
deadness errors whenever information is received from the program. In addition to detecting

deadness errors, the monitor also provides facilities for tracing status changes, querying the current

“picture” and undertaking evasive action to avoid a deadness error.

3.1 THE MONITOR'S STRUCTURE

Our monitor is implementad in two parts, a tagsk and a package. The task is inserted into the program
by the preprocessor. The package is designed to be compiled separately; it contains the monitor's
data structure and the procedures that act upon it. This organization allows separate compilation as
well as protecting the monitor from simuitaneous access.

The package is separated from the program for efficiency reasons. It is compiled only once, and then
linked each time a program requires it. Even if several programs are using the monitor, only one copy
of the monitor needs to be kept on disk. Separately compiling the monitor also eases the burden on
the compiler, the ADAM compiler had .troubles dealing with the monitor and a mcderate sized
program at the same time.

The menitor task’'s main purpose is to transmit data to the monitor package. The preprocessed
program communicates the status change information to the task via the Ada rendezvous
mechanism. The task then calls the appropriate procedure of the monitor package. Bultering the
information through a task in this way ensures that only one thread of control (the monitor task) can
update the monitor's data structure at a time. The monitor task also seems to provide a convenient
place to customize the monitor for a specific application, since the monitor's internal workings are
hidden in the package. We have created an interactive version of the monitor in this manner.

Structure Outiine:

package MONITOR_DATA_PACKAGE Ie
== Data structures omitted
procedure ACCEPTING (SERVER : In TASK_ID:;
ENTRY_NAME : in STRING;
OEADLX_FLAG : out BOOLEAN):

procedure UNBLOCK (SUBJECT : in TASK_ID):
end MONITOR_OATA_PACKAGE:

task body MONITOR is

MONITOR_DATA_PACKAGE.INIT; == Initisiize the monitor package.
while not MONITOR_OATA_PACKAGE . DONE loop
== Loop until all other tasks have terminated.
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select .
~= Simply accept a call from the program and
-= relay the information to the monitor.

accept ACCEPTING (SERVER
ENTRY_NAME
DEADLK_FLAG
MONITOR_DATA_PACKAGE .ACCEPTING (SERVER,
: ENTRY_NAME ,
OEADLK_FLAG):

: in TASK_ID;
: in string;

end;
or

.,or..,j. . .
_accept UNBLOCK (SUBJECT : in TASK_ID) do

MONITOR_OATA_PACKAGE .UNBLOCX (SUBJECT):
. end;

end select;

end loop;

end MONITOR:

3.2 THE MONITOR'S PICTURE

The monitor maintains, at runtime, a picture of the program's scheduling state. This picture consists
of status and associated information for each task, entry point information, cependency information,
and several global (to the monitor package) counters. This picture is incompiete in that it does not
reflect any interactions with the monitor task. All calls to the monitor task are assumed 10 be promptly
answered and completed. The picture may not even be strictly accurate as calls o the monitor may
be serviced in an order other than that in which the status changes occur.

3.2.1 TASK INFORMATION

Each activated task of the original program is represented by a record in the monitor's data structure.
This record contains status and other information pertaining to the task.

type TASK_RECORD is
~= Each task will have a record of this type to
== hoid information associated with the task.

record
TASK_NAME : MON_NAME_TYPE;
== A user-defined output name.
STATUS : TASK_STATUS;

CALLED_TASK : TASK_ID:

CALLED_ENTRY : MON_NAME_TYPE;

The status of this task.

The task that this task has issued an
entry cail to.
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== Theentry being called.
PARENT_TASK : TASK_ID:

-~ The task that this one depends on.
DEPENDENTS : ID_PTR;

== A list of tasks depending on this task.
NUM_WAIT_FOR : INTEGER:
== The number of tasks that need to finish
-= before this one can proceed.

LIST_PTR : ENT_PTR;
TRACE

-= A pointer to the list of entries in this task.
BOOLEAN;

== True IFF trace information
== on this task is to be printed
ond record:; -

The first fleid containg the task name. This string is used only to identify the task to the user, and has
no internal meaning. The second field contains the task’s status (see Section 2.1). The next two
fields contain associated information for status calling; the task and entry called. Following these are
fields containing dependency information: a list of dependent tasks that this task is waiting on; the
number of thosa tasks that have not terminated: and this task's parent (see 3.2.3). An acdditienal field
holds a pointer to the list cf entries associated with the task. The last field containg a fic j indicating
whether or not the task's status changes should be traced. These records are stored in an array, and
indexed by task IDs.

3.2.2 ENTRY INFORMATION

The monitor creates entry records for each entry point as it finds out about them (i.e.. just before they
are referenced at call, accept and select statements). These records contsin the unique string
representation for the entry created by the preprocessor, the number of tasks calling the entry and a
HERE_FLAG, indicating if the task is currently waiting for (ready to accept) a call to the entry. All of
the records for a task’s entries are stored in an unordered linked list referenced from the task's
record.

3.2.3 DEPENDENCY INFORMATION

Keeping track of dependency information poses special problems for the monitor. According to the
Adsa ssmantics, each task directly depends on some master (a block, subprogram, task, etc.). This
master is usually the scope where the task is declared, however tasks created by an allocator call
depend on the scope where the access type was deciared.

We define the sons of task t (or main program) to be those tasks which:

1. directly depend on ¢;
2. directly depend on one of t's inner blocks; or
3. directly depend on a subprogram (or subprogram inner block) elaborated by t.

if task s is the SON of task t, then task t ig the father of task s. This father-son relationship forms a tree
structure.
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The preprocessor inserts declarations for a list of directly dependent tasks in each block, task and
subprogram of the original program (see Section 4.3). An additional list, containing all of the task's
sons, is declared in each task body. When new tasks are created, their IDs are added to the
appropriate lists during the ADD_DEPENDENTS monitor call.

When task t is ready to terminate, it passes the list of all its sons to the monitor. The monitor sets the
PARENT_TASK fisid in the task record of each task on the list to t's ID. The monitor stores the number
of sons that have not yet finished in the t's NUM_WAIT_FOR fieid.

By checking to see if task t's NUM_WAIT_FOR fleid is 0, the monitor can easily see if all the sons of t
have finished. When this occurs, task t is terminated, along with all of its sons still at select
statements with terminate aiternatives. The monitor then checks the FATHER field for task t. Ifitis
non-empty (contains a valid task ID) then the PARENT_TASK's NUM_WAIT_FOR count is decremented.

The same algorithm is used when a task attempts to leave a block, except that the list of dependents 1
containg only those tasks that directly depend on the block.

Notes:

it is important to set the PARENT__TASK field of a task only when the father is waiting on that task. I
Otherwise, the task may decrement the PARENT__TASK'S NUM__WAIT__FOR count before the
PARENT_TASK is waiting forit (e.g., if the father was waiting on an inner block).

it is important t0 have the monitor modify these lists of dependents. When a task is attempting to
tarminate, it passes the monitor a list of it's dependents. |f some other task creates a new dependent
of the first task, then the change in the list of dependents must be communicated to the monitor. The
monitor checks for this situation whenever it updates a dependency list. The monitors mutual
exclusion properties are used to ensure that two tasks are never simuitaneously updating a
dependency list.

3.2.4 GLOBAL VARIABLES

Three variables are used to enabie the monitor to efficiently detect giobal blocking. The monitor
maintains counts of:

1. the number of tasks that have been activated;
2. the number that are blocked; and
3 the number that have terminated.

It the number of tasks that are terminated is equal to the number of tasks that have been activated
then the program has terminated. Otherwise, if the number of tasks that are blocked is equal to the
number of tasks that have been activated, then global blocking has occurred. These checks are done
every time a task becomes blocked in the monitor's picture (for any reason).

An additional boolean variable, DONE, is used to inform the monitor task that all of the other tasks
have terminated. This variable is declared in the visibie part of the monitor package so it can be
examined Ly the monitor task.

Below is the visible part of the monitor package and the specification for the monitor task.

== Data structures used by the monitor.




== (10 De compiled separately.)

with DTTY_IO ) -= Adam 70 package.
package MONITOR_DATA_PACKAGE is

== Bounds and data structures used by
«= the monitor.

STRING_LENGTH : constant INTEGER := §;
MAX_NUM_TASKS : constant INTEGER := 15; .
TASK_LIMIY : constant INTEGER := (MAX_NUM_TASKS - 1):

subtype TASK_ID is INTEGER range - 1 .. TASK_LIMIT;
ALL_TASKS : constant TASK_ID := - 1;
NULL_TASK : constant ,_TAS.K_ID_ v - 15

subtype MON_NAME_TYPE isstring (1 .. STRING_LENGTH);
NULL_NAME : constant MON_NAME_TYPE := "#NIL#";

type ENTRY_REC:
type ENTRY_PTR is access MON_ENT_REC:
type ENTRY_REC is
record
NAME : MON_NAME_TYPE;
NEXT : ENTRY_PTR;
end record;
-= Used to pass the monitor lists of
-=  entry points.
type ID_REC;
type ID_PTR is access MON_ID_REC;
type ID_REC is
record
10 : TASK_ID:
NEXT . : ID_PTR; R
== Used to pass the monitor lists of
-= taskliD'’s .

end record; ~= Monitor peckage procedures are omitted
~= gince they correspond one — one with
~= monitor task entries described below.
DONE : BOOLEAN := FALSE:
end MONITOR_DATA_PACKAGE: «= The DEADLOCK MONITOR task itsell.
«=  (Thig is inserted into P.)

use MONITOR_DATA_PACKAGE:;

task MOMITOR is == Group 1 below are called to notify the )
: == monitor of status changes that are about

== fo take place of activation of new tasks, .

== and of task dependencies (see Section 3.1).

entry NEWTASK (TASK_NAME : in string;
NEW_ID : out TASK_1D); ]
entry ADO_DEPENDENT(FATHER : in TASK_ID;
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SON : in TASK_ID):
LIST1 : inout ID_PTR;
LIST2 : inout ID_PTR:

entry CALLING (CONSUMER : in TASK_ID:
SERVER : in TASK_ID;
ENTRY_NAME : in STRING:
DEADLK_FLAG
entry ACCEPTING (SERVER : in TASK_ID;
ENTRY_NAME : in STRING]:
DEADLK_FLAG
entry SELECTING (SERVER : In TASK_ID;
- ENTRY_LIST : inout ENTRY_PTR;
TERMINATE_FLAG : in BOOLEAN;
DEPENDENTS : in ID_PTR;
DEADLK_FLAG - : out BOOLEAN):

entry START_RENDEZVOUS (CONSUMER : in TASK_ID:
. SERVER : In TASK_ID:
ENTRY_NAME : in STRING):

entry ENO_RENDEZVOUS (CONSUMER : in TASK_ID:

SERVER : in TASK_1D:
ENTRY_NAME : in STRING);
entry END_BLOCK (CONSUMER : in TASK_ID;
DEPENDENTS : in ID_PTR;
DEADLK_FLAG
entry END_TASK (CONSUMER : i TASK_ID;
DEPENDENTS : in ID_PTR;
DEADLK_FLAG : out BOOLEAN);

== Group 2 provides some facilities for
== tracing statuses and scheduling states.
entry PRINT;
entry TRACE (SUBJECT : in TASK_D;
FLAG _: in BOOLEAN):
' ' -= Group 3is used to facilitate evasive action.
entry QUERY (SUBJECT : in TASK_ID:
CALLED_TASK. ENTRY_CALLED : out string:
WAITING_AT : out ENTRY_PTR):
entry UNBLOCK (SUBJECT : in TASK_ID);
end MONITOR;

. 3.3 STATUS CHANGES

Calls to the majority of monitor entries are placed in the original program according to the
transtormation rules given in Section 4. These calls notify the monitor of impending status changes,
and any associated information (as defined for each status in Chapter 2). Such calls typically invoive
modifying the monitor’s picture. Below we describe the necessary action that the monitor must take
on each call.

Evasive action in this implementation must make use of the DEADLK_FLAG formal parameter of entry
calls. All monitor calls which can block the task issuing the call have a BLOCKED_STATE_FLAG actual
parameter in addition to those mentioned below. This flag is returned with the value true if and only if
a blocked state resuits in the monitor's picture from the call. For more details on evasive action see
Section 8. The DEADLK_FLAG parameter will be ignored for the remainder of this section.
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The NEWTASK entry informs the monitor that another task has been created. The monitor creates a
new task record, initializing it with the passed task_name and status running. The remaining ‘ields are
set to nulil values. The record is stored in the next available position in the array. The index where it
is stored is returned as the NEW_ID.

Notes:

Task ID's cannot be implemented by access type objects accessing task objects because of the
strong typing of Ada. The monitor type declarations would have to be changed (and the monitor
recompiled) for each monitored program P. The task type deciarations of P would have to be piaced
in the most global declarative part; and still the probiem of a task being able to find its own name
would remain. - :

The ADD _ DEPENDENT entry is used to put tasks on dependency lists. When the monitor receives
this call, it places SON on the two lists. If one of the LISTs is a part of the PARENT's associated
information, then the DEPENDENTS list and the NUM_WAIT_FOR count in the PARENT'S record are
updated accordingly.

The CALLING entry is used to tell the monitor that a task is about to issue an entry call. When the
maonitor accepts this entry it undertakes the following actions:

1. Change the CONSUMER's status in the monitor's picture from Running to Calling.

2. Increment the queue size (in the monitor's picture) associated with the called entry.

3. if, in the monitor's picture, the SERVER is in status Accepting, Select_Terminate, or
Select_Dependents_Completed, and it is waiting on the cailed entry then the SERVER's
status is changed to Running and the NUM_BLOCXED count is decremented.

4. The NUM_BLOCKED count is incremented due to the consumer becoming biocked.

The ACCEPTING entry is used to inform the monitor that a task is about to exeécute an accept
statement. Upon receiving this call the monitor examines the queue-size for this entry. if it is zero,
then the SERVERS status is changed to Accepting, the HERE__FLAG for the entry is set, and
NUM_BLOCKED is incremented.

SELECTING is called when a task is about to execute a select statement, which may contain
terminate aiternatives, as well a number of open accept aiternatives (see Section 4.4.3). The
ENTRY_LIST parameter contains a list of all the entries that can be accepted. The DEPENDENTS
parameter holds a list of all the task's sons. The TERMINATE_FLAG parameter will be true only if there
is an open terminate aiternative. if some of the entries on ENTRY_LIST have non-empty queues (in
the monitor's picture), then the SERVER remains in status Running. Otherwise, the HERE_FLAGs for
all the entries on the list ara set and the TERMINATE_FLAG is checked. Ifitis true, then

1. The SERVER is placed in status Select With_Terminate.

2. The SERVER's DEPENDENTS field is set to the passed DEPENDENTS list.

3.1t the SERVER's PARENT__TASK fieid contains a valid ID, then the PARENT__TASK's
NUM_WAIT_FOR countis decremented and checked for 0.

it the TERMINATE_FLAG is falge, then the SERVER is put into status Accepting. If the SERVER is now
blocked, then NUM_BLOCKED is incremented.

The START_RENDEZVOUS entry is cailed at the start of all the original accept bodies of P. Upon
- receiving this calil the monitor does the following:
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1. If the CONSUMER is not in status Calling (e.g. because it issued a conditional or timed
entry call) then the actions for entry CALLING are taken. This may cause the SERVER to
change status from Accepting to Rurning.
2. The queue size associated with the entry point is decremented.
3. All of the HERE_FLAGS for the SERVER's entries are cleared, as the server is no longer
waiting at any entry, _
When receiving the END_RENDEZVYOUS entry the monitor simply changes the status of CONSUMER
back to Running and decnments the NUM_BLOCKED counter. The server parameter is included for
tracing purposes. :

The END_BLOCK entry has r.mameten CONSUMER (the task leaving the block) and DEPENDENTS, a
list of tasks which are dependent on the scopo being left. If some of the DEPENDENTS have not
terminated, the monitor

i 1, Sets the FATHER field for each task on the DEPENDENTS list to the CONSUMER.

' 2. Sets the CONSUMER's NUM_WAIT_FQR field to the number of tasks on the DEPENDENTS list
that have not finished.

3. Sets the CONSUMER's status to Block Wait.

4. Increments the NUM_BLOCKED counter.

The EMD_TASK entry is similar to the END_BLOCK entry, except the CONSUMER is placad in status
Completed rather than Block_ Wait.

3.4 DEBUGGING/TRACE ENTRIES

These entries are used to control diagnostic output for the monitor, and are placed by the
programmer in either the originai or transformed Ada source code.

PRINT has no parameters. When the monitor accepts this entry, it prints out its internal picture.
Using this, a programmer can get "snapshots” cf scheduling states during a computation.

A call to the monitor entry TRACE enables (it FLAG is true) or disables (if FLAG is false) trace output
for the SUBJECT. When the monitor receives an entry call whose CONSUMER or SERVER parameter is
a task with tracing enabled, then the monitor will display the cal! and its parameters. It is possible to
trace all calls to the monitor by using entry TRACE with parameters ALL_TASKS and TRUE. Normal
tracing is restored by cailing TRACE with ALL_TASKS and FALSE.

3.5 EVASIVE ACTION

A deadness error is imminent whenever the DEADLK__FLAG parameter has the value true on
completion of a monitor call. Evasive action based on testing this parameter value may be
programmed in the original source code (see Chapter 6). The two entries UNBLOCK and QUERY are
provided to assist this.

UNBLOCK has a single TASK_ID parameter, SUBJECT. The monitor assumes that the SUBJECT task
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will not proceed with the originally intended rendezvous, and updates its picture accordingly, thus
"unblocking” the task. UNBLOCK can be severely misused. It should only be called from the task
SUBJECT when the DEADLK_FLAG parameter has been returned true, and SUBJECT is not going to
proceed with the tasking statement that has just been indicated by a monitor call.

The antry QUERY may be used to help control evasive action routings. A task passes the monitor the
SUBJECT, a TASK_1D, and receives information about how that task is blocked. Specifically, the task
and entry that the SUBJECT is calling (it any) and the entries that the SUBJECT is accepting (if any) are
-retumed. This entry is intended to allow more intelligent evasive action by giving the task undertaking
the evasive action more information about the error.
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4. PREPROCESSOR

This section describes the preprocessor applied to the Ada text of a program P. The purpose of the
praprocessor is to introduce communication between the tasks of P and the monitor so that the
monitor is informed of any task status change in P. The resuiting monitored program is denoted by P'.

The preprocessor applies a sequence of textual transformations. Each transformation introduces
new declarations or statements. The transformations currently implemented in our presant monitor
extend the set of transformations previously given in [German,Heimbold,Luckham 82] in two ways:
(1) the set of deadness errors detectad by the monitor is extended to. include errors involving the
- inability to terminate, (2) the manitored data is exiended to include data necessary lo give an
adequate deecription of a deadness error for the purpose of debugging and evasive action. Also the
original presentation lacked discussion of many important implementation details upon which the
correctness of an actual implementation depends.

The transformations can be broken down into atomic steps describable in a formalism similar to the
presentation in {German,Helmboid.Luckham £2]. However formal description of many details (e.g.,
transformations for composite data structures containing tasks, and for parameter expressicons
invoking tasking) is very complex. So here our descriptive approach is informal. We describe the
preprocessor as a sequence of four passes. First the monitor declaration and body is placed at the
beginning of the declarative part of the main program. Fgilowing this, each succeeding pass is then
assumed to take its input from the output of the preceding pass. Each section of this chapter
describes a pass (4.1 - first pass, 4.2 - second pass, etc.). We will use Pk to designate the output from
tha kth pass, thus P2 is the output from the transformations described in Section 4.2,

The transformations set up a correspondence (Section 2.3) between P and P' which is ailso described
informally below.

Notes:

Only the original rendezvous attempts between tasks in P are monitored; rendezvous with the monitor
itself are not monitored. All identifiers introduced by the preprocessor, e.g. type names and variables,
are assumed not to clash with the identifiers in P. )

4.1 INTROOUCTION OF TASK ID’S

Passes 1 and 2 introduce task IDs into the monitored program. Pass 1 introduces data structure to
store I1Ds and communications of IDs; pass 2 introduces code to initialize IDs. The resulting program
has the following properties: (1) every active task has a unique ID, (2) a calling task can always
access the called task's 1D, (3) a task can access its own ID, (4) within every scope the ID of the
currently executing task can be accessed, and (5) whenever an entry is called the ID of the caller is
passed {0 the called task.

Notes:
The introduction of task |Ds must be done carefully with regard to the Ada semantics of task
activation to avoid errors due to accessing uninitialized 1Ds.

Pass 1 performs the following six transformations:
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1. Each task type declaration, t, is replaced by a new task type called t.TASK followed by a
record type with the original name, t. t_TASK is obtained by the following modifications to
the original declaration, t: A new entry, SET_ID, is placed in the task type dectaration,
and a new variable, MY_ID, in the task body; an accept SET_ID is insaerted as the first
statement in the task body. The new record type, t, has two components, a task (called
TASK_0BJ) of type t TASK and a task ID.

2. Each task declaration, t, in P is replaced by a task type deciaration t_TASK, arecord type,
t_RECORD, and a record of that type with the name, t. The task type t_TASK is obtained
from the original task deciaration by madifications similar to those stated in stepi;
t_RECORD hatwoeompommaam
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4. A new formal parameter called MY_ID of type TASK_1D is added to every subprogram
specification.

5. A new formal parameter called CALLER_ID of type TASK_1ID is added to every entry
specilication.

8. All calls to entries and subprograms are modified appropriately as follows: the TASK_ID
parameter of every entry and subprogram call is bound to the value of MY_ID. This is
either the value of the local MY_ID variable (if the call is in a task) or the value of the
formal TASK_ID parameter, MY_1D (if the call is in a subprogram).

Notes:

The 10 of the main program always has the value 0.

As.a resuit of step 1, all task object declarations of a task type in P will become declarations of a
record type in P1.

As a result of steps 1 and 2 all task objects occur as components of records which also contain a
TASK_ID component. We will call these task records. If the original tasks were components of a data
structure, the new task records take their place in the structure as a result of using the names of the
original tasks as names for the task record types (step 1) or task records (step 2).

Whersver a task was vigible in P, now both the task and its ID are visible as components of a task
record with the same name.

The SET_1D entry and the local MY_1D variable are used to "Inform" a task of its own 1D when it is
activated, and to store that ID.

The Ada semantics do not specify the order of task activation. Therefore at steps 1 and 2 accept
SET_I0 is inserted as the first statement of every task body; in pass 2 task 1D components of all task
records are initialized befors any task is informed of its ID by a SET_ID entry call. This "holds up"
every task until all ID components are initialized, thus avoiding the possibility that tasks in P* might
attempt to access task ID components that are uninitialized.

The purpose of steps 4 - § is to ensure that the actual value of the CALLER_ID parameter of any entry
call is the 1D of the task issuing that call. This in turn requires that a subprogram must be able to
access the ID of the task that called it so that if it issues an entry call it can pass this (D to the called
task. (Note that a subprogram can be visible to, and thus called by, more than one task.) Hence the
TASK_ID paramaeter must be added to both subprograms and entries.

Correspondence: Alter pass 1, correspondences between text of P and new or madified text of P1
is as follows (text in P that is not affected by the transformations corresponds to the same text in P1):
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A task object t in P corresponds to the task object component of the record with the same name, ¢, in
P1;i.e., t corresponds to t.TASX_0B8J. A task type tin P corresponds to a task type in P1 obtained by
moditying the declaration of t at step 1 above (called t_TASK). The oid and new subprogram and
entry declarations and entry calls correspond. The new variables MY_1D, entries SET_1D, cails to
SET_1D, and new accept SET_ID statements have no correspondence in P.

4.1.1 EXAMPLES OF PASS 1 mmnmm

1 A task type declaration is transformed into a lask lypo followod by a record type:
Note: T1 corresponds to T1.TASK. .

ORIGINAL TEXT, P
task type Tl is
entry E1;

entry €E2 (I : in INTEGER; . . .);
end T1;

. task body Tl is
bogln

end Tl:

TRANSFORMED TEXT, P1:

task type T1_TASK is
entry SET_ID (N : in TASK_ID): entry E1 (CALLER_ID : in TASK_ID):
entry E2 (CALLER ID : in TASK_ID; I :in INTEGER: . . .): )
end T1_TASK; ) '
task body T1_TASK is
MY_ID : TASK_ID;
begin .
aceopt SET_ID (N : in TASK_ID) do
: MY_ID := N; -

end T1_TASK;

type T1 is
record
TASK_08J : T1_TASK:
1D : TASK_ID;

end record;

2. All task object declarations become taak record object declarations:
Note: A TASK corresponds to A TASK . TASK 08J.

ORIGINAL TEXT, P:
A_TASK : Ti;

) | e
.
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TRANSFORMED TEXT, P1:
A_TASK : T1;

3. Declarations of a single task are transformed into a task type and record type declaration, followed
by a record declaration:
Note:T1 corresponds to T1.TASK_08J. ORIGINAL TEXT, P:

task T1 Ie

entry El:

ontry €2 (N : in INTEGER: . . .):
end TL; . . :

task body T1 is

end T1:

CREER s e e

TRANSFORMED TEXT, P1:

task type T1_TASK is

entry SET_ID (N : in TASK_ID);
entry E1l (CALLER_ID : in TASK_ID);
entry £2 (CALLER_ID : in TASK_ID;
N :in INTEGER: . . .):

& end T1_TASK;

task body T1_TASK is
MY_ID : TASK_ID;

) begin
1 accept SET_ID (N : . . .) do
MY_ID := N; :
end SET_ID;

ond T1_TASK;
type T1_RECORD Is

record : :
TASK_08J : T1_TASK;
10 : TASK_ID:
end record;

T1 : T1_RECORD: :

4. Pass 1 transformations modify subprogram and entry declarations and calls:

ORIGINAL TEXT, P:

procedure PROC1 is
y end i’R.OC.I;

E %
function F1 (I : in INTEGER)
return SOME_TYPE is




end F1;

PROCL;

K:= F1 (J):
g T1.£2 (N);

TRANSPORMED TEXT, P1:
procedure PROC1 (MY_ID : in TASK_ID) Is

end PROC1;
tsnction F1 (MY_ID : in TASK_ID: [ : in INTEGER)
return SOME_TYPE Is

- end F1:
PROC1 (MY_ID);
K := F1 (MY_ID, J):
T1.TASK_0BJ.E2 (MY_ID, N):

4.2 INITIALIZATION OF TASK ID'S

Pass 2 accents as input the resuit of Pass 1 and inserts statements to initialize TASK_ID components
and variables. When a task record is declared, the declaring scope must call the monitor to obtain a
new 10, initialize the ID field of the task record, and inform the task of its ID.. If several tasks are
declared in the same declarative part then a// of the ID record components must be initialized before
letting any task proceed, otherwise one of the tasks could access an ID component before it has been
initialized.

The Pass 2 transformations for initializing the [Ds of staticaily declared tasks in each declarative part
are: :

1. For each task record declaration & call to MONITOR.NEWTASK is inserted; the string
parameter of this cail is bound to the task record name and the TASK_ID parameter is the
task record ID component. if the declaration is in the declarative part of a subprogram or
bilock the call is placed in the first statement position of that subprogram body or biock; if
the declaration is in the declarative part of a task body, the call is placed immediately
following the accept SET_ID statement of the task body.

2 Immediately following ail the calls to MONITOR.NEWTASK inserted at step 1, calls to the
SET_ID entry of the task component of each task record are inserted; the TASK_1D
¢ parameter of each call is bound to the 1D component of the same task record.

- If tasks are declared as part of a complex structure (built out of arrays, records, and access types)
‘ then Pass 2 uses iterative techniques to construct the initialization ccde for objects of that complex

. . type. E.Q., task I0s occuring as components of arrays ars initiglized by for loops iterated over the
array index type. Details of thase techniques are omitted.




Notes:
Calls inserted by step 1 will inform the monitor of the identifier in the source text to be associated with
each task (for tracing and debugging) and will initialize all task record !D components. The monitor
can then associate its own 1D for a task with a name for the task in the source text. If a task occurs as
a value in a data structure, the name of the global data structure is used, so in general many IDs may
be associated with a source text name. As a result of calls inserted at step 2, all tasks now "know"
their ID’s, and have been "heid up” until a// ID components are initialized.

Correspondence: Text to initialize task ld's' added by Pass 2, steps 1 and 2 does not correspond to
any text in P. _ ) Lo - .

4.2.1 EXAMPLES OF PASS 2 TRANSFORMATIONS
P1 DECLARATIVE PART:

T1 : SOME_TASK_TYPE;
TASK_ARRAY : array (1..8) of SOME_TASK_TYPE;

type TWO_TASKS_TYPE is
record
FTRST : SOME_TASK_TYPE;
SECOND : SOME_TASK_TYPE:
N . ¢+ INTEGER;
end record;
TWO_TASKS : TWO_TASKS_TYPE;

P2 IMMEDIATELY FOLLOWING REGIN:

. . == Text to initialize all task 1D components
MONITOR.NEWTASK ("T1", T1.1D);
for I in 1..5 loop
MOMITOR .NEWTASK ("TASK_ARRAY" ,TASK_ARRAY (I).ID):
end loop:
MOMITOR.NEWTASK ("TWO_TASKS.FIRST”", TWO_TASKS.FIRST.ID):
"MONITOR.NEWTASK ("TWQ_TASKS.SECONO®, TWQ_TASKS.SECOND.ID):

== Text to inform ail tasks of their ID’s
T1.TASK_08J.SET_ID (T1.1ID):
for I in (1..5) loop
TASK_ARRAY (I).TASK_OBJ.SET_ID (TASK_ARRAY (I).ID):
end loop:;
TWO_TASKS.FIRST.TASK_OBJ.SET_ID (TWO_TASKS.FIRST.ID):
TWO_TASKS.SECOND,TASK_0BJ.SET_ID (TWO_TASKS.SECOND.ID);

Note on Exampie: Due to Pass 1, SOME_TASK_TYPE is now a task record type.

The situation in which a new task is created and activated by an allocator requires speciai handling in
Pass 2. If P contains an access type accessing a type, T, with task type components, then P1 wiil
contain an access type accessing T which now has task record compaonents. Allocation of an cbject
of type T must not be permitted to make an ID component visible before it is initialized. Our approach
is to "hide” such allocators in function cails.
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Pass 2 contains a third step:

3. Whenever an access type which designates a type containing task components is deciared, Pass 2
inserts a new function declaration to be associated with the access type. This function will take as
parameter a value of the access type and return the same value. It initializes ail task IDs in the
object designated by its parameter. Wherever an allocator is called in P1 to create a new object
containing task components, Pass 2 will substitute a call to this new function in P2 with the value of
the allocator call as its actual parameter.

Correspondence: The new functions and calls to them have no correspondence in P1. The
sllocator calls in P1 correspand to the allocator call parameters of the new function calis in P2.

Example:

(4 H

type TWO_TASKS_TYPE is
record
FIRST : SOME_TASK_TYPE;
SECOND : SOME_TASK_TYPE;
N : INTEGER;
end record;

type TWOQ_TASKS_REF is
access TWO_TASKS_TYPE;

TWO_TASKS_PTR : TWO_TASKS_REF;

TWO_TASKS_PTR := new TWO_TASKS; .

type TWO_TASKS_TYPE is
record
FIRST : SOME_TASK_TYPE;
SECOND : SOME_TASK_TYPE:
N : INTEGER;
end record ;

type TWO_TASKS_REF is
access TWO_TASKS_TYPE;

function NEW_TWO_TASKS (TEMP : In TWO_TASKS_REF) return
TWO_TASKS_REF is
«= initiatize TASK_IDs in TEMP

begin
MONITOR.NEWTASK (. . .):
MONITOR.NEWTASK (. . .):

TWO_TASKS .REF . FIRST.SET_ID (. . .)
TWO_TASKS .REF . SECOND.SET_ID (. . .

)i
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returmn TEMP;
ond NEW_TWO_TASKS:

TWO_TASKS_PTR : TWO_TASKS_REF;

TWO_TASKS_PTR := NEW_TWO_TASKS (new TWO_TASKS);:

- Notes on Exampile:
Components FIRST and SECOND were originally task types in P, and have become task record types
in P1 as a result of Pass 1. When TWO_TASKS_PTR can be referenced in P2, all of the ID's in the
designated object will have been initialized. -

4.3 MONITORING OF DEPENDENT TASKS

The monitor cannot detect some dead states without dependency information. For example, a task
moves from status BLOCK_WAIT to status RUNNING when all of its dependents dec!ared in the block
have terminated. Consequently, a task may be dead as a result of 2 deadness among its cependents
which prevents them from terminating.

In order to deal with such situations, the preprocessor adds a variable designating a list of
{dependent) task ids to each blcck, i.e., each bicck in P’ that corresponds to a block in P contains a
list of ali tasks dependent on that block. The preprocessor also adds calls (o the monitor entry,
ADD_DCPENLENTS, with this list as a parameter, whenever a new dependent task is activated. At
runtime this list is passed to the monitor by the executing task when a new dependent task is
activated, or when the executing task has reached the end of that block. Thus, in this present monitor
design, updating of dependents lists and checking for termination is done by the monitor itsaif.

Pass 3 declares a new local variable, DEPENOENT_IDS, at the beginning of every declarative part of
P2, except those in the new subprograms introduced in Pass 2. This variable designates a !inked list
of all tasks directly dependent on the block where it is declared. An additional variable,
ALL_DEPENDENTS, is added to the outermost declarative portion of every task body and the main
program. These lists are modified only by calls to the monitor's ADD_DEPENDENT entry. After every
NEWTASK call, Pass 3 inserts an ADD_DEPENDENT call to the monitor with parameters: the ID of the
task executing the block, the 1D of the dependent task, the DEPENDENT__IDS variable, and the
ALL_DEPENDENTS variable.

Pass 3 of the preprocessor:

1. Adds the declaration, "DEPENDENT_IDS : MONITOR_DATA_PACKAGE.ID_PTR" at the
beginning of each declarative part of P2 except for the new subprograms whose
declarations were inserted by pass 2.

2. Adds the declaration "ALL_OEPENDENTS : MONITOR_DATA__PACKAGE.ID_PTR" at
the beginning of the outermost declarative part of each task body.

3. Inserts the call MONITOR.ADD__DEPENDENT after each call to the monitor entry,
NEW_TASK. The parameters are FATHER => MY__ID, SON => out parameter of
preceding NEWTASK call, LIST1 => DEPENDENT __IDS, LIST2 => ALL_DEPDENDENTS.
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Notes: Tasks created by an allocator depend on the block where the access type was declared, so
their ID's must be added to the DEPENDENT__IDS list corresponding to that block. In P2 these
allocator calls are replaced by calis to a new function associated with the access type. This function is
declared immediately following the access type by Pass 2. It contains the appropriate NEW_TASK
calls. Since pass 3 does not insert a declaration of a local DEPENDENT_IDS, . . . in these function
bodies, the immediately global DEPENDENT __IDS variable is visible within these function bodies.
These will be the DEPENDENT _IDS variables associated with the declarative parts containing the
access type declarations. Therefore the Pass 3 monitor calls to ADD_DEPENDENT placed in the
function will have as parameter the DEPENDENT __IDS variable for the biock in which the access type
is declared.
It a select statement, say, in task T1, has a terminate aiterniative, then the ID's .of all tasks directly
on T1, or one of its inner blocks, must be passed to the monitor. The variabie
ALL_DEPENDENTS designates a list of exactly theee ID's.

Cofmpondom_:o: The text added to P3 in Pass 3 does not correspond to text in P2,

4.4 RENDEZVOUS MONITORING

Pass 4 inserts calls to the monitor entries CALLING, ACCEPTING, SELECTING, START_RENDEZVOUS,
END_RENDEZVOUS, END_BLOCK, and END_TASK. These calls inform the monitor of direct and indirect
status changes, and ass_ociated information arising from rendezvous attempts.

The transformation uses strings derived from the source text identifiers as names of task entries.
These names are used to notify the monitor which entry of a task is being called by another task and
are crucial in the monitor’'s internal representation of rendezvous statuses. These entry name strings
must name axactly one entry in any given task: no entry can be represented by two different strings,
and no string can represent two different entries of the same task. A string could represent several
entries, as long as they are all in different tasks. An entry family requires a different string for each
member of the family. Finally, the transformation introduces arrays for storing and accessing the
names associated with entry families; details of these entry family name arrays are omitted.

4.4.1 THE CALLING ENTRY

Calls to this enitry are inserted in a task P immediately before an unconditional, untimed entry cali.
When a call to CALLING is executed, the monitor will change the status of the task to Calling. As soon
as this monitor call finishes and the next statement is executed, the task's actual status will be Calling.
Timed and conditional entry calls are not monitored because they do not resuit in the task changing
status (until the call has actually been accepted). The CONSUMER parameter is the ID of the task
making the call, i.e., the value of MY_ID. The SERVER parameter is the ID component of the called
task's task record. The ENTRY_NAME parameter is the string created by the preprocessor naming the
called entry. The DEADLK_FLAG parameter indicates whether evasive action should be taken to avoid
a blocked state.

Notes:

Examples:
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P3:

T1.TASK_OBJ.E1 (MY_ID):
T1.TASKOBJ.ENTRY_FAMILY (EXP) (MY_ID):
T1.TASKOBJ.E2 (MY_ID, PARAMETER);

MONITOR.CALLING (MY_ID, T1.ID, "E1", DEADLK_FLAG):
T1.TASK_OBJ.E1 (MY_ID):
. MONITOR.CALLING (MY_ID, T1.JD, ENTRY_FAMILY_STR (EXP), DEADLK_FLAG):
T1.TASKOBJ.ENTRY_FAMILY(EXP)(MY_ID);
MONITOR.CALLING. (MY_ID,T1.10,"E2"; DEADLK_FL);
T1.TASKOBJ.E2 (MY_ID, PARAMETER);

4.4.2 THE ACCEPTING ENTRY

Pass 4 inserts a call to ACCEPTING immediately before each "simpie" accept statement that is not a
select alternative (preprocessing of select aiternatives is described in 4.4.3). The parameters are:
MY_ID (server name), the preprocessor string naming the entry being accepted, anc DEADLK_FLAG.

Example:

P3:

accept E1 (CALLER_ID) do

P4:
MONITOR.ACCEPTING (MY_ID, “E1", DEADLK_FLAG);
accept E1 (CALLER_ID) do

4.4.3 THE SELECTING ENTRY

Before executing a select statement a (server) task must inform the moniter of those entries that can
be accepted by that select statement. [t must therefore evaluate the guards of the select aiternatives,
including any delay or terminate aiternatives. This evaluation must be done once. The resulting
values are used both to give the monitor the information associated with the new Accepting status (or
Select_ terminate status) and to execute the select statement afterwards. Pass 4 inserts declarations
of new variables to hold the values of the guards, and text to evaluate the select guards and construct
the status information for the monitor.

Pass 4 executes the following text transtormations for each select statement in P3;

1. The select statement is enclosed in the body of a new block statement.

2. Boolean variables TEMP1, TEMP2, . . . are declared locally in the new bleck, one for




each select alternative, and initialized to the guard expression of that alternative, or to
TRUE if there is no guard.

3. Boolean variables TEMP_DELAY and TEMP__TERMINATE are declared locally after the
previous variables. TEMP_DELAY is initialized to TRUE if there is an else part, to the
disjunction of the TEMP variables corresponding to delay alternatives, or to FALSE if there

. is no eise part or delay aiternatives. TEMP_TERMINATE is initialized to the TEMP variable

E _ corresponding to the terminate alternative if there is one and to FALSE otherwise.

4. A variable ENTRY_LIST of type ENTRY_PTR is declared locally and initialized to null.

. 8. Ada text to construct the list of entry names corresponding to open accept alternatives is
] ' inserted at the beginning of the local block body (i.e., before the select statement). This
g text is instantiated from a single text template and performs a computation as follows: if
TEMP__DELAY is TRUE it does nothing; otherwise it builds a list of entry name strings
4 corresponding 0 the open accept alternatives and then calls the monitor entry,
F SELECTING, with parameters: MY__ID, ENTRY__LIST, TEMP__TERMINATE,
ALL_DEPENDENTS, DEADLK_FLAG.

6. The boolean conditions in the select alternatives are replaced by the corresponding TEMP
variables.

Correspondence: The select statement in P4 corresponds to the original select statement in P3.
The new local biock, declarations, and new text in P4 has no correspondence in P3, except that calls
to functions in the new text corresponds to the original calls in guards in P3.

Notes:

1. 1f TEMP_DELAY is TRUE the server task cannot enter a blocked state but will remain in
status Running.

2. TEMP_TERMINATE is declared even if there is no terminate aitarnative so that the
preprocessor can use a single text template for computing the list of open entries.

3. TEMP_DELAY and TEMP_TERMINATE cannot both be true due to Ada rules for select
statements.

4. Construction of the list of entries proceeds as follows: ENTRY_LIST is initialized to null;
then for each accept aiternative with a true guard condition a new MON_ENT_REC record
containing the string representing the entry is allocated. If the entry is part of an entry
tamily, its index expression is evaluated at this point (to correspond with the order of
evaluation in the Ada semantics). This record is inserted into the is* designated by

ENTRY_LIST.
Examples:
P3:
seiect

accept E1 (CALLER_ID : in TASK_ID) do

ond E1;
or
accept £2 (CALLER_ID : In TASK_ID);

C A i n————
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I : in INTEGER) do
end EZ; )
end select;
select;

when FLAGL1 =>
sccept E1 (CALLER_ID : in TASK_ID) do

end E1;
or
when F (X) s> delay 10;
end select;
Pa:
declare
TEMP1 : BOOLEAN := TRUE:;
TEMP2 : BOOLEAMN := TRUE:
TEMP_DELAY : BOOLEAN :s FALSE;
TEMP_TERMINATE : BOOLEAN := FALSE;
ENTRY_LIST : ENTRY_PTR,
begin
it not TEMP_DELAY then
ENTRY_LIST := null;
it TEMP1 then
ENTRY_LIST :» new ENTRY_REC'(NAME => "E1", NEXT => ENTRY_LIST):
endif;
if TEMP2 then
ENTRY_LIST := new ENTRY_REC'(NAME => “E2", NEXT => ENTRY_LIST):
end it;
MOMITOR.SELECTING (MY_ID, ENTRY_LIST, TEMP_TERMINATE,
ALL_DEPENDENTS, DEADLK_FLAG);
endif;
select
accept E1 (CALLER_ID : in TASK_ID) do
end E1;
ar
accept E2 (CALLER_ID : in TASK_ID;
I : in INTEGER) do
end E2;
end select;
end;
TEMP1 : BOOLEAN := FLAG1;
TEMP2 + BOOLEAN :a F (X):
TEMP_DELAY : BOOLEAN := TEMP2:
" TEMP_TERMINATE : BOOLEAN := FALSE;
¥ begin

if not TEMP_DELAY then
ENTRY_LIST := null;
if TEMP1 then
ENTRY_LIST := new ENTRY_REC(NAME s> "E1i",
NEXT => ENTRY_LIST);

end if;




it TEMP2 then
ENTRY_LIST := new ENTRY_REC(NAME => "E2*,
NEXT => ENTRY_LIST):

endif;

MONITOR.SELECTING(MY_IC, ENTRY_LIST, TEMP_TERMINATE,
ALL_DEPENDENTS):

end if;

select

when TEMP1 =)
accept E1 (CALLER_ID) do
“end E1;
or - :
) - when TEMPZ =) delay 10;
ond select;
endif; :
end;

Often text inserted by the preprocessor pass 4 can be omitted. In the first exampie above, none of
the TEMP variables for accept alternatives, nor the corresponding conditiona! tests on them, are
needed. The preprocessor does in fact make some optimizations on the use of the TEMP variables.

4.4.4 ENTRY START _RENDEZVOUS

Pass 4 inserts a call to this monitor entry at the beginning of every accept bocy, even these inside of
select statements. The parameters of the call are: CONSUMER => CALLER_ID (a parameter of the
entry call), SERVER => MY_ID, ENTRY_NAME => the name_string associated with the entry being
accepted. )

Correspondence: This entry call has no corresponding code in P.

4.4.5 ENTRY END RENDEZVOUS

A call to this entry is placed at the end of every accept body. The parameters of this call are:
CALLER_ID, MY_ID, and the string associated with the entry accepted. This entry call does not
correspond to any code in P3.

Examples:

P3:
accept E1 (CALLER_ID : in TASK_ID);
accept E2 (CALLER_ID : in TASK_ID; I : in INTEGER; . . .) do

end E2.




A . accept E1 (CALLER_ID : in TASK_ID) do )

y MONITOR.START_RENDEZVOUS (MY_ID, CALLER_ID, "E1");

i MONITOR.END_RENDEZVOUS  (MY_ID, CALLER_ID, "E1");
end E1;

accept E2 (CALLER_ID : in TASK_ID,) (I : in INTEGER; . . .) do
MONITOR,START_RENDEZVOUS (MY_ID, CALLER_ID, "E2"):

MONITOR.END_RENDEZVOUS  (MY_ID, CALLER_ID, "E2");
end E2; ‘

4.64.6 ENTRY END_TASK

A call to this entry is inserted at the end of every task body. The parameters ars MY_I1D (the ID of the
task that is completing), ALL_DEPENDENTS (the ID’s of all tasks dependent on the completing task),
and DEADLK_FLAG. The value returned for DEADLX __FLAG will indicate whether or not the task will
cause a blocked state by completing. This entry call does not correspond to any code in P.

4.4.7 ENTRY END_BLOCK

A call to this entry is inserted at the end of each inner block (or subprogram) which has a declarative
b part. The parameters are the same as for END_TASK, except that the local DEPENDENT_IDS variable
i takes the place of ALL_DEPENDENTS. Again, this entry call does not correspond to any ¢ode in P3.

} 4.5 FUNCTION CALLS IN TASKING STATEMENTS

The above transformations are inadequate when parameters of tasking statements contain function
calls since evaluation of these parameters might aiso involve tasking.

Example:

P:

function F1 (ARG: in INTEGER)
return INTEGER is
T3: SOME_TASK_TYPE;

begin
end Fl. )
T1.€2 (F1 (X)):

P4:

function F1 (MY_ID: in TASK_ID; ARG : in INTEGER)
return INTEGER is
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T3: SOME_TASK_TYPE;
DEPENDENT_IDS : ID_PTR;

begin
MONITOR.NEW_TASK (. . .);
MONITOR.ADD_DEPENDENT (.
MONITOR,.SET_ID (. . .):

e d

S H

E ol

MOMITOR.END_BLOCK (MY_ID, DEPENDENT_IDS, DEADLK_FLAG):
end F1; .

e

MONITOR.CALLING (MY_ID, T1.ID, "E2");
_ . ST ee A
. T1.TASK_0BJ.E2 (MV_ID, F1 (MY_ID, X));

At point A in the above example, T1 is in status Calling in the monitor's picture. However, when the
call to F1 is executed, T1 couid be put into status Block_Wait waiting for tasks dependent on F1 to
terminate. Currently, this will confuse the monitor and may lead it to falsely detect a global blocking
situation, or not detect an actual one. The preprocessor therefore moves all function calls out of the
A tasking statements. This requires additional temporary variables to hold the values of parameter
4 expressions and intermediate values.

Examples:

Pa
L MONITOR.CALLING (MY_ID, T1.1ID, "E2"):
T1.TASK_0BJ.E2 (MY_ID, Fi (MY_ID, X}):

4 PS:

TEMR1 := F1 (MY_ID, X):
: MONITOR.CALLING (MY_ID, T1.ID, "E2");
% T1.TASK_0BJ.E2 (MY_ID, TEMP1);
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S. CORRECTNESS OF DEADNESS DETECTION

In this chapter we outline an approach to proving the correctness of our runtime monitoring system.
A formal treatment of correctness with detailed proofs is beyond the scope of this paper. We attempt
here to indicate what needs to be proved and informal reasoning which can be formalized.

Corractness is taken to mean: (i) for any potential deadness error of the original program P there is

an equivaient potential deadness error in the monitored program P*; (ii) in any computation of P', if the

monitor detects a deadness error, it will do 30 before that error occurs and that error will occur if the

computation continues normally, (ifi) certain kinds of deadness errors, including giobal blocking and
circular deadlock will always be detected.

(/) means that the monitor does not interfere with the st of potential deadness errors of the monitored
program. (i) does not imply that the monitor will detect every deadness error, as defined in Section
2.2, but that any error it can detect in its pucture will be a future state of P'. (iii) is a completeness
result.

S.1 NON INTERFERENCE

The preprocessing (Chapter 4) and addition of the monitor sets up a textual correspondence between
P and P'. Declarations of subprograms and entries in P correspond to subprograms and entries with
the same name in P'; declarations of task types correspond to task types in P'; 1ask objects of P
corresoond to task components of task record objects in P'; statements that are untouched by the
transformation correspond; calls to subprograms and entries in P correspond to calls to subprograms
and entries with the same names in P'; finally the corresponding is consistent (Section 2.3). in
particuiar, the biock structure of P is preserved in P'. The monitor, calls to the monitor, and additional
' object declarations and statements inserted prior to monitor calls do not correspond to text in P.

The foilowing discussion is based on this correspondence between P and P'.
Claim 1. For every execution of P there is a corresponding execution of P’ and conversely.

Notes: this dcpends on the assumptions (i) that all tasks of P have the same priority, (ii) on
properties of the correspondence whereby corresponding statements invoke the
same status change (if any) on corresponding tasks, and (i) that all monitor
rendezvous terminate. Given an execution E of P, it is then possible to construct a
corresponding E' of P’ by scheduling the runnable tasks so that corresponding
tasks execute corresponding code in the order of E; the monitor M is given super-
high priority. We note that every declaration and allocate statement of P
corresponds to a declaration or allocate of the same kind, so that at any point in E
and E' where correspondence has been established, corresponding tasks have
been allocated and activated.

Claim 2. In two corresponding computations of P and P', the sequences of status changes of
corresponding tasks, except for monitor rendezvous, are the same.

Notes: This requires noting that not only are the direct status changes of corresponding

Y
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tasks the same, but corresponding tasks invoke the same indirect status changes
onh corresponding tasks in executions that correspond. This latter results from
noting that corresponding entry calls are to entries with the same name,

Claim 3. If execution E of P corresponds to execution E' of P’ then the only possible task in €' that
does not correspond to a task in E is the monitor M.

Notes: This depends on an analysis of the declarations inserted by the preprocessing,
showing that any task that could be invoked in P' other than M has code
' corrupondingtocodoinl’inilsbody

CIaim4. For-ch potcnﬂddudnmtrorofP P'hasmoquivalontpotentwdudnuserror.md
* conversely.

Notcs:LctdudnmmSoecurhumﬂonEofP.LotE‘boueompondmg
execution of P’ (Claim 1). Using Claim 2 and termination of Monitor rendezvous, all
tasks of E’ that correspond to tasks in E will reach the status of their corresponding
task in S. At that point in E’, the monitor M must be blocked in accepting status.
By Claim 3, the scheduling state of E' is equivalent to S.

i ng

The converse can be argued similarly by considering corresponding executions.

“ ) Note:
Claim 4 states that adding monitor to P does not interfere with P (see Section 2.3).

5.2 CORRECT PREDICTIVE MONITORING

Consider a monitored program P'. Recall that any execution of P’ contains one task, the monitor M,
which does not correspond to a task in a corresponding execution of the unmonitored program P. A
crucial property of the preprocessing (Chapter 4) ‘is that during an execution of P', any task t that
makes a direct change of status in attempting to rendezvous with a task other than M, will call the
appropriate entry of M before making that status change, and when t is returned to running status as
a rasuit of completion of the monitor call, its next status change normally will be the ane signalled.
We call this property of the preprocessing predictive monitoring. As a result of predictive monitoring,
the monitor's representation of the scheduling states of P’ is always ahead of-the actual scheduling
state in any computation.

Claim 5 If at any point in an execution of P* the monitor M has an entry call from task ¢ implying a
change of status from running to s, then after the monitor rendezvous with t terminates, t
will be in status running and if it continues normally its next status change (it any) is to s.

_ Notes: This depends on a case analysis of the clauses in the preprocessing. ‘arious

: complications must be noted, e.g. that any actual parameter expressions of entry

' calls or select aiternatives are "unwound” and their values assigned to temporary
variabies prior to the monitor call. Note that the claim aliows for the case where the
scheduler does not run t again in that execution,

Predictive monitoring enables the monitor to update its representation of the scheduling state to

E
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reflect a future state under the assumption that runnable tasks will eventually run. Deadness errors
that are represented in the monitor therefore must eventually happen in the execution. The predictive
property enables the monitor to signal tasks to take evasive action before a deadness error actually
occurs.

-8.3 MONITOR CORRECTNESS AND COMPLETENESS

Three crucial properties of the monitor implementation must be proved: (1) all monitor entry calls
terminate; (/i) the monitor's representation of scheduling states correctly represents the scheduling
state implied by any legal sequence (i.e., a sequence that can occur in a computcttion) of monitor
entry calls from a preprocessed program. (i) the monitor will detect any deadness error that is a
consequence of iis representation and that these errors inciude giobal blocking and circular
deadiock. (Certain deadness errors may not be adequately represented, and therefore not
detectable.) :

Notes:
Arguments supporting these claims must be based on the implementation description given in °
Chapter 3.

Note that a proof of (ii) requires showing that indirect status changes implied by a direct change are
represented correctly when an entry call is completed.
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6. EVASIVE ACTION

In this chapter we outline some paradigm techniques for programming evasive action in the
monitored program. These paradigms use Ada exception propagation, and therefore differ from our
present implementation and examples.

Notes:

The facilities provided by our monitor for evasive action depend on procedure parameters (e.g.
DEADLK_FLAG parameter of CALLING because of deficiencies in the Adam compiler. similarly, the
example experiment given in Section 7.4.does. not use exceptions.

it is assumed that the monitor may propagate a number of exceptions signifying the imminent
occurrence of different kinds of dead states, for example:

GLOBAL_BLOCKING, CIRCULAR_DEADLOCK,
OEPENDENTS_BLOCKED, LOCAL_BLOCKING : exception

In most cases the monitor will propagate an exception to the final task whose status change will
complete a dead state. We may call this the "offending” task, although it may be no more of an
offender than cother tasks who have aiready reached blocked statusas. In more sophisticated
monitoring systems, exceptions may be propagated to other tasks in the monitored system.

There are three paradigms for using the propagation of such exceptions in the source text to enabie
the monitored program to take evasive action.

6.1 MINOR EVASION

The evasive action is taken and then the program proceeds exactly as normal (i.e., as it would have if
no deadness exception had been propagated from the monitor). This technique may be used in
cases where the imminent error may be avoided, e.g. by freeing a resource and delaying, and then
acquiring the resource again. ’

l.ugin . " == Block enclosing monitor call.
MONITOR.CALLING(MY_ID, S_ID, "E"”); =-- .intentionto callS
exception
when GLOBAL_BLOCKING s> -- Evasive action
end:;
S.E; == Continue to call S as planned.

6.2 MAJOR EVASION

A major evasion requires the program to disrupt its normal course of action. A standard exampie
would be that the "offending” task reset its local data and return to some previous starting point.

Example:
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loop

begin -
MONITOR.CALLING (MY_ID, S_lID,
S.E; --
exception
when GLOBAL_BLOCKING => ~--
ond; --
6.3 CATASTROPHE

Monitor call ;and intended task action
"E");: =-- areplacedinatlock;
Normal action is to call S.

Evasive action when ERROR is
propagated by the monitor call.
Do not cail S after evasive action,
but continue here.

in a catastrophe there is no hope of “the offending task(s)” continuing to function usefully. If this
kind of error is signalled the offender will simply report diagnostics and possibly transmit wamings to
other tasks in the program. The reorting can be based on "questioning” the monitor.

Example:

task body T is

begin

MONITOR.CALLING (MY_ID, S_ID. "E");

S.E;

.xceﬁti;:m.
when GLOBAL_BLOCKNG =>

== Report conditions and then die gracefully; do not continue.

ond T; o
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7. EXAMPLES

in this chapter we give examples of the pre-processing transformation, of the monitor's output
describing deadness errors, and of evasive action.

7.1 A DINING PHILOSOPHERS PROGRAM

| The foliowing example is the version of the dining philosophers problem with a potential blocking

error given by Hoare in his paper on Communicating Sequential Processes. The exampie gives the
original Ada text and the preprocessed text. The output comments from the monitor describing the
blocking error when it occurred are also given.

Blocking can occur as follows.

All five philosophers can enter the room, sit down at the table and pickup one fork; then all
forks will be in accepting status waiting for a PUTDOWN, while all philosophers will be in
calling status having called PICKUP for their second fork, and the table will be waiting for
either of its entries to be called.

Whether or not this situation will happen depends on the underlying scheduling. The error may never
occur or may occur almost immediately, depending on the runtime task supervisor. This is illustrated
by the delay statements.in the Philosopher task body. If the delay before picking up the second fork is
removed, the blocked state will never occur when the program is run with the task supervisor package
at Stanford; with this delay, the tasks biock before any philosopher eats.

with DTTY_I0;
use DTTY_I0;

procedure ROOM is -~ The cast of actors: FORKS,
pragma MAIN; -=-  PHILOSOPHERS, and TABLE.

task type FORK is
entry PICKUP;
entry PUTDQWN:
end FORK;

task TABLE is
entry SITOOWN (I : out INTEGER):
entry GETUP (I : in INTEGER):
end TABLE:

task type PHILOSOPHER:
type SET_OF_FORKS is array (0 .. 4) of FORK;

FORKS : SET_OF_FORKS:
«= The scripts: the bodies of the actors.

task body FORK is
begin
loop
accept PICKUP;




) accept PUTDOWN;
end loop; .
end FORK;

task body TABLE is

type SEAT_ARRAY is array (0 .. 4) of BOOLEAN;
SEATS : SEAT_ARRAY := (others => TRUE):

== True means unoccupied.

" begin
loop
. accept SITOOWN (I : out INTEGER) do
for J in 0..4 loop ,
) ) gL I H :
exit when SEATS (J);
ond loop:;
SEATS (I) := FALSE;
end;
or
accept GETUP (I : in INTEGER) do
SEATS (1) := TRUE;
end; .
oend select;
end loop:
end TABLE;

task body PHILOSOPHER is
SEAT : INTEGER:
begin
loop

delay 1; == Delays are for thought. If a large enough
= delay is placed between picking up the
= two forks then the biocked state occurs;
defay 2; == If not, the philosophers don't block.

TABLE.SITDOWN (SEAT);
FORKS (SEAT).PICKUP;

FORKS ((SEAT + 1) mod 5).PICKUP;

== This illustrates the dependence of
== ' the error on the runtime supervision.

delay 1;
FORKS (SEAT).PUTDOWN;
FORKS ((SEAT + 1) mod 5).PUTDOWN;
TABLE.GETUP (SEAT);:
end loop;
end PHILOSOPHER;

SOCRATES, PLATO, ARISTQTLE, MARX, RUSSELL- : PHILOSOPHER:

begin
null:
end ROOM;

The five forks, five philosophers, and the
table are all activated at this point.
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7.2 THE PREPROCESSED AND MONITORED DINING PHILOSOPHERS

The source code of the Dining Philosophers program after pre-processing is given. The reader

should compare this version with the original text in Section 7.1 and with the descriptions of pre-

procaessing in Chapter 4.

with MONITOR_DATA_PACKAGE: use MONITOR_DATA_PACKAGE:
with DTTY_I0;

use DTTY_IO:

-~ The cast of actors: FORKS, PHILOSOPHERS, and TABLE.
procedure ROOM Is. - : ,

o == The DEADLOCK MONITOR itself.
task MONITOR is

read;

task body MONITOR is
e e . -= Uses MONITCR BASE PACKAGE
end MONITOR;

pragma MAIN;
== Variables and new type deciarations are inserted by Pass 1, (Section 4.1)
-- tointroduce task ids; compare with declarations in Section 7.1.

MY_ID : constant TASK_ID := 0;
MON_DEPEND_ID + ID_PTR;
MON_LIST + ENTRY_PTR;

MON_DEADLK_FLAG : BOOLEAN;

task type MONTYPE_FORK is
entry SET_ID (N : in INTEGER);
entry PICKUP (CALL_ID : in IMTEGER):
entry FUTDOWN (CALL_ID : in INTEGER);
end MONTYPE_FORK;

type FORK is
record
TSKOBJ : MOMTYPE_FORK;
10 :+ INTEGER;

end record:;

task type MONTYPE_TABLE is
entry SET_ID (N : in INTEGER):
entry SITDOWN (CALL_ID : in INTEGER: I : out INTEGER);
entry GETUP (CALL_ID : in INTEGER: I : in INTEGER);
end MONTYPE_TABLE;

type MONREC_TABLE is

record
TSKO3J : MONTYPE_TABLE:;
D : INTEGER;
end record;

TABLE : MONREC_TABLE;
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task type MONTYPE_PHILOSOPHER Is
entry SET_ID (N : in INTEGER);
end;

type PHILOSOPHER is

record
TSKOBJ : MONTYPE_PHILOSOPHER;
10 ¢ INTEGER;

end record;

{ type SET_OF_FORKS is array (0 .. 4) ot FORK;
FORKS : SET_OF_FORKS;
== The scripts: the bodies of the actors.

task body MONTYPE_FORK Is

MY_ID : INTEGER;

MON_DEPEND_ID : ID_PTR;

MON_LIST : ENTRY_PTR;

MON_DEADLK_FLAG : BOOLEAN;

ALL_DEPENDENTS : ID_PTR;
begin

accept SET_ID (N : in INTEGER) do

-= Task waits until its ID is initialized
‘ -= (Section4.1)
MY_ID := N;
end;
loop

] _ MONITOR.ACCEPTING(MY_ID, "PICKXU", MON_DEADLK_FLAG):

A accept PICKUP (CALL_ID : in INTEGER) do
MONITOR,START_RENDEZVOUS (CALL_ID, MY_ID, "PICKU");
MONITOR.END_RENDEZVOUS (CALL_ID, MY_ID, "PICKU™);
} end;

E MONITOR.ACCEPTING (MY_ID, "PUTDO", MON_DEADLK_FLAG):
accept PUTDOWN (CALL_ID : in INTEGER) do
MONITOR.START_RENDEZVOUS (CALL_ID, MY_ID, "PUTDO");:
MONITOR.END_RENDEZVOUS (CALL_ID, MY_ID, "PUTDO"):
ond;

end loop;

MONITOR.END_TASK (MY_ID, MON_DEPEND_ID, MON_DEADLK_FLAG):
end MONTYPE_FORK:;

task body MONTYPE TABLE is

MY_10 INTEGER:
MON_DEPEND_IO  : ID_PTR:
MON_LIST : ENTRY_PTR;
MON_DEADLK_FLAG : BOOLEAN:
ALL_DEPENDENTS : ID_PTR;:

type SEAT_ARRAY is array (0 .. 4) of BOOLEAN;
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SEATS : SEAT_ARRAY := (others s> TRUE):
begin .
accept SET_ID (N : in INTEGER) do
MY_ID := N;
ond;
loop

it not FALSE then
MON_LIST := null;
if TRUE then »
MON_LIST := new MON_ENT_REC({NAME =>"SITDO",
) NEXT => MON_LIST):
endif; _ ' :
it TRUE then _
MON_LIST := new MON_ENT_REC(NAME =>"GETUP",
' MNEXT => MON_LIST);
endif;
MONITOR.SELECTING(MY_ID, MON_LIST, FALSE,
MON_DEPEND_ID, MON_DEADLK_FLAG):

endif;
select
accept SITOOWN (CALL_ID : in INTEGER:

1 : out INTEGER) do
MONITOR.START_REMDEZVOUS(CALL_ID, MY_ID, "SITDO"):
for J in 0..4 loop

1 := J;
exit when SEATS(J);
end loop;
SEATS(I) := FALSE:
MONITOR.END_RENDEZVOUS (CALL_ID, MY_ID, "SITDO"):
end:
or

accept GETUP (CALL_ID : in INTEGER;

I : in INTEGER) do
MONITOR.START_RENDEZVOUS (CALL_ID, MY_ID, "GETUP");
SEATS(I) := TRUE:

MONITOR.END_RENDEZVOUS  (CALL_ID, MY_ID, "SITDO"):
end;

end select;
end loop;

MONITOR.END_TASK (MY_ID, MON_DEPEND_ID, MON_DEADLK_FLAG):
end MONTYPE_TABLE;

task body MONTYPE_PHILOSOPHER is

MY_1D : INTEGER;
MON_DEPEND_ID : ID_PTR;
MON_LIST : ENTRY_PTR;
MON_DEADLK_FLAG : BOOLEAN;
ALL_DEPENDENTS : ID_PTR:
SEAT : INTEGER;




begin’
accept SET_ID (N : in INTEGER) do
MY_ID := N;
end;
loop
delay 1;

MONITOR.CALLING (MY_ID, TABLE.ID, "SITDO", MON_DEADLK_FLAG);
TABLE.TSXOBJ.SITDOWN (MY_ID,SEAT);

MONITOR.CALLING (MY_ID, FORKS(SEAT).ID, "PICKU™, MON_DEADLK_FLAG):
fORKS (SEAT).TSKOBJ.PICKUP (MY_ID):
delay 2; : -

" MONITOR.CALLING (MY_ID, FORKS ((SEAT + 1) mod §).1D, "PICKU",

: MON_DEADLK_FLAG):
FORKS ((SEAT + 1) mod 5§).TSKOBJ.PICKUP (MY_ID):
delay 1;

MONITOR.CALLING(MY_ID, FORKS (SEAT).ID,"PUTDO" ,MON_DEADLK_FLAG);
FORKS (SEAT).TSKOBJ.PUTDOWN (MY_ID); :

MONITOR.CALLING (MY_ID, FORKS ((SEAT+1) mod 5).1D, “PUTDO",
MON_DEADLK_FLAG);
FORKS ((SEAT+1) mod 5).TSKOBJ.PUTDOWN (MY_ID);

MONITOR.CALLING (MY_ID, TABLE.ID, "GETUP", MON_DEADLK_FLAG);
TABLE.TSKOBJ.GETUP (MY_ID, SEAT):;.

end loop;

MONITOR.END_TASK (MY_ID, MON_DEPEND_ID, MON_DEADLK_FLAG):
end MONTYPE_PHILOSOPHER;

SOCRATES : PHILOSOPHER;:

"PLATO : PHILOSOPHER;
ARISTOTLE : PHILOSOPHER;
MARX ¢ PHILOSOPHER;

RUSSELL : PHILOSOPHER:

== Monitor calls inserted by Pass 2 (Section 4.2) to initialize all task ids in task records,
and track task dependencies (Section 4.3)
MONITOR.NEWTASK ("TABLE", TABLE.ID):
MONITOR.ADD_DEPENDENT (MY_ID, TABLE.ID, MON_OEPEND_ID, ALL_DEPENDENTS);
for MON_I1 in 0 .. 4 loop
MONITOR.NEWTASK ("FORKS", FORKS(MON_I1).1D); -
MONITOR.ADD_DEPENDENT (MY_ID, MON_DEPEND_ID, FORKS (MON_I1).ID);
end loop;
MONITOR.NEWTASK ("SOCRA", SOCRATES.ID);
MONITOR.ADD_DEPENDENT (MY_ID, MON_DEPEND_ID, SOCRATES.ID):
MONITOR.NEWTASK ("PLATO", PLATO.ID):
MONITOR.ADO_DEPENDENT (MY_ID, MON_DEPEND_ID, PLATO.ID):
MONITOR.NEWTASK ("ARIST", ARISTOTLE.ID);
MONITOR.ADD_DEPENDENT (MY_ID, MON_DEPEND_ID, ARISTOTLE.ID):
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MONITOR.NEWTASK ("MARX ", MARX.ID);

MONITOR.ADD_DEPENDENT (MY_ID, MON_DEPEND_ID, MARX.ID):
MONITOR.NEWTASK ("RUSSE", RUSSELL.ID):
MONITOR.ADD_DEPENDENT (MY_ID, MON_OEPEND_ID, RUSSELL.ID);

-= SET_ID callis to inform each task of its ID inserted by Pass 2 (Section 4.2).
TABLE.TSKOBJ.SET_ID (TABLE.ID);
for MON_I1 in 0 .. 4 loop

FORKS (MON_I1).TSKOBJ.SET_ID (FORKS (MON_I1).1D);

end loop; :
SOCRATES.TSKOBJ.SET_ID (SOCRATES.ID):;
PLATO.TSKOBJ.SET_ID (PLATO.ID):;
ARISTOTLE.TSKOBJ.SET_ID (ARISTOTLE.ID):
MARX.TSKOBJ.SET_ID (MARX.ID):
RUSSELL.TSKOBJ.SET_ID (RUSSELL.ID);
null; '

MONITOR.END_TASK (MY_ID, MON_DEPEND_ID, MON_DEADLK_FLAG);
end ROOM:

7.3 DIAGNOSTIC DESCRIPTION OF THE DINING PHILOSOPHER'S DEAD STATE il
Below is the description of a global blocking state given by the monitor.

Key: In descriptions of Accepting status, each entry name is foilowed by it's queue size (an integer)
and a "*" if the task is in a status accepting that entry.

**MON** GLOBAL DEADNESS HAS BEEN DETECTED
*SMON®~ TASK INFORMATION

0 MAIN is block_waiting on 11 tasks.
Its entries are:
<NONE>
Its father is: -1

-=- This description indicates that the table task was in accepting status,
== accepting either entry, and neither entry had been cailed.

1 TABLE is accepting
Its entries are:
SITDO (0*) GETUP (0%)
Its father is: 0

== Fork indicated as task 2 is in status accepting PUTDOWN which no callers,
== while some task has called PICKUP.

2 FORKS is accepting
Its entries are:
PUTDO (0®*) PICKU (1)
Its father is: 0

3 FORKS is accepting
Its entries are:

. — - e e e e




PUTDO (0*) PICKU (1)
Its father is: O N

4 FORKS is accepting
Its entries are:
PUTDO (0*) PICKU (1)
Its father is: 0

5 FORKS is accepting
Its entries are: .
PUTDO (0*) PICKU (1)
Its father is: 0 S

8 FORKS is accepting
Its entries are:
PUTDO (0*) PICKU (1)
Its father is: O

SOCRATES is task 7; It has called task 3 (a fork) entry PICKUP;

© we can see above that task 3 is accepting PUTDOWN.

7 SOCRA is calling task number 3 at entry PICKU
Its entries are:
"<NONE>
Its father is: 0

8 PLATO is calling task number 4 at entry PICKU
Its entries are:
<NONE>
Its father is: 0

9 ARIST is calling task number 5 at entry PICKU
Its entries are:
<NONE>
Its father is: O

10 MARX is calling task number 6 at ontry PICKU
Its entries are:
i <NONE>
Its father 1:° 0 -

11 RUSSE is ca!ling task number 2 at entry PICKU
Its entries are:
<NONE>
Its father is: 0 ’
**MON** end of dead state description.

7.4 THE EVASIVE ACTION PHILOSOPHER TASK '

The following is an example of a philosopher task with additional evasive action capability. If the task
receives a warning from the monitor upon informing it that the next action is to pickup its right hand
fork, the evasive action will be to putdown the lefthand fork. it will then attempt to eat again as before.
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This can be programmed using paradigm 6.1, Section 6. It is assumed that this source text will be
preprocessed and monitor calis placed as usual, including the evasive action text.

task body PHILOSOPHER Iis
SEAT : INTEGER;

begin
loop
delay 1;
TABLE .SITDOWN(SEAT);
FORKS(SEAT).PICKUP;
delay 1;
begin :

"7 " MONITOR.CALLING(MY_ID,FORKS({SEAT + 1) mod 5).ID "PICKUP");
-= This call might propagate GLOBAL _BLOCKING.
" exception
when GLOBAL_BLOCKING s>
FORKS(SEAT) .PUTDOWN:;
-- Evasive action: put down left hand fork.
"FORKS(SEAT).PICKUP;
== Tryto pick up both forks again.
end;
FORKS((SEAT + 1) mod 5).PICKUP;
== May get same error again here.
delay 1; .
FORKS(SEAT) .PUTDOWN;
FORKS ((SEAT +1) mod 5).PUTDOWN:
TABLE .GETUP(SEAT);
end loop;
exception
when GLOSAL.BLOCKING =>
-~ The evasive action did not solve the probiem, so degrade gracefuily.
end PHILOSOPHER;

Since the Adam compiler does not implement exception propagation during task rendezvous (e.g.
rendezvous with the monitor task), evasive action in our experiments uses the value of a parameter,
MON_DEAD_FLAG. The evasive action is inserted after the program has been preprocessed since we
do not want the evasive action monitor calis to be monitored.

task body MONTYPE_PHILOSOPHER is

My_1D : INTEGER;:
MON_DEPEND_ID : ID_PTR;
MON_LIST : ENTRY_PTR;
MON_DEADLK_FLAG : BOOLEAN;
OUTER_DEPENDENTS : ID_PTR renames MON_DEPEND_ID:
SEAT : INTEGER;
begin
accept SET_ID (N : in INTEGER) do
MY_ID := N;
end;
foop
delay 1;

MONITOR.CALLING(MY_ID, TABLE.ID, "SITDO", MON_DEADLK_FLAG):
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TABLE.TSKOBJ.SITOOWN(MY_ID,SEAT);

MONITOR.CALLING(MY_ID, FORKS(SEAT).ID,"PICKU" ,MON_DEADLK_FLAG):;
FORKS (SEAT).TSKOBJ.PICKUP (MY_ID):;
delay 1:

MONITOR.CALLING(MY_ID, FORKS((SEAT + 1) mod 5).ID, "PICKU®,
MON_DEADLK_FLAG) ;
it MON_DEADLK_FLAG then
MONITOR.TRACE (ALL_TASKS, TRUE);
MONITOR.UNBLOCK (MY_ID);

MONITOR.CALLING (MY_ID, FORKS(SEAT).ID,
7 »PUTDO" ,MON_DEADLK_FLAG) ;
! - FORKS (SEAT).TSKOBJ.PUTDOWN (MY, ID);

] MONITOR.CALLING (MY_ID, FORKS(SEAT).ID,

"PICKU", MON_DEADLK_FLAG):
i FORKS (SEAT).TSKOBJ.PICKUP (MY_ID):

end if;

MONITOR.CALLING(MY_ID, FORKS((SEAT + 1) mod 5).ID, "PICKU",
_ MON_DEADLK_FLAG) 1

FORKS((SEAT + 1) mod 5).TSKOBJ.PICKUP(MY_ID):
delay 1;

MONITOR.CALLING(MY_ID, FORKS(SEAT).ID,"PUTDO", MON_DEADLK_FLAG):
FORKS (SEAT).TSKOBJ.PUTDOWN (MY_ID);

MONITOR.CALLING(MY_ID, FORKS((SEAT + 1) mod 5).ID, "PUTDO",
‘ . MON_DEADLK_FLAG);
FORKS ((SEAT+1) mod 5).TSKOBJ.PUTDOWN (MY_ID);

MONITOR.CALLING (MY_ID, TABLE.ID, "GETUP", MON_DEADLK_FLAG):
TABLE.TSKOBJ.GETUP (MY_ID,SEAT);

end loop;

MONITOR.END_TASK (MY_ID, MON_DEPEND_ID, MON_DEADLK_FLAG);
end MONTYPE_PHILOSOPHER;

7.5 ACTION OF DINING PHILOSOPHERS WITH EVASIVE ACTION

Below is a trace of activity by the evasive version of the dining philosophers. First the monitor
: description of an imminent dead state is given. A philosopher task is warned, and a trace of its
£ evasive action and subseguent "normal” activity then follows.

Key: See example 7.3.

**MON®* GLOBAL DEADLOCK HAS BEEN DETECTED
**MON®* TASK INFORMATION
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MAIN is block_waiting on 11 tasks.
Its entries are: .
{NONE>
Its father is: -1

TABLE is accepting
Its entries are:
SITDO (0*) GETUP (0*)
Its father is: 0 .

FORKS 1is accepting
Its entries are: .
PUTDO (0*) . PICKU (1)
Its father is: O ) .

FORKS is accepting
Its entries are:
PUTDO (0*) PICKU (1)
Its father is: 0 '

FORKS is accepting
Its entries are:
PUTDO (0*) PICKU (1)
Its father is: O )

FORKS is accepting
Its entries are:
PUTDO (0*) PICKY (1)
Its father is: O

FORKS is accepting
Its entries are:
PUTDO (0*) PICKU (1)
Its father is: 0

SOCRA is calling task number 3 at entry PICKU
Its entries are:
<NONE>
Its father is: O

PLATO 13 calling task number 4 at entry PICKU
Its entries are:
<NONE>
Its father is: 0

ARIST is calling task number 5 at entry PICKU
Its entries are:
<NONE>
Its father is: O

10 MARX 1{s calling task number 8 at entry PICKU

Its entries are:
{NONE>
Its father is: 0

.
i t; :
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i : . == RUSSELL will be the philosopher task receiving the monitor warning.
11 RUSSE is calling task number 2 at entry PICKU '
Its entries are:
<NONE>
Its father is: 0 i
*sMON®* end of dead state description.
. ®sTRC®** cal) of monitor entry CALLING.
The consumer i3 11 [RUSSE]. The server is 8 [FORKS]. The entry is [PUTDO].
== This indicates that RUSSELL is taking evasive action and is putting down the /sfthand fork
== instead of attempting to pick up the righthand fork. Notg that the monitor call

== to UNBLOCK, indicating evasive action, is not traced, but must aiready have been calied
== 30 that the monitor’s "picture” is correct.

**TRC** call of monitor entry START_RENDEZVOUS. .
The consumer is 11 [RUSSE]. The server is 8 [FORKS]. The entry is [PUTDO]. 4

**TRC** call of monitor entry END_RENDEZVOUS.
The consumer is 11 [RUSSE]. The server is 8 [FORKS].
== RUSSELL has now put down his left fork.

*sTRC** call of monitor entry CALLING.
The consumer is 11 [RUSSE]. The server is 6 [FORKS]. The entry is [PICKU]. 1

== RUSSELL now attempts to pickup the lefthand fork again!
== Howaver he will be behind MARX on the entry queue.

**TRC** call of monitor entry ACCEPTING.
The server is 6 [FORKS]. The entry is [PICKU].

== A FORK, task 8, is the only unblocked task.

3 ®*TRC** call of monitor entry START_RENDEZVOUS.
- The consumer is 10 [MARX ]. The server is 6 [FORKS]. The entry is [PICKU].

== Now MARX can pickup his righthand lork, which was RUSSELL's lefthand fork.

**TRC*® call of monitor entry END_RENDEZVOUS.
The consumer is 10 [MARX ]. The server is 6 [FORXS].

P **TRC** call of monitor entry ACCEPTING.
The server is 6 [FORKS]. The entry is [PUTDO].

®*TRC** call of monitor entry CALLING. .
The consumer is 10 [MARX ]. The server is 5 [FORKS]. The entry is [PUTDO].

== Now MARX is finished eating and prepares to put down his forks.

**TRC** call of monitor entry START_RENDEZVOQUS.
The consumer is 10 [MARX ]. The server is § [FORKS]. The entry is [PUTDO].

e s T T,
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ssTRC** call of monitor entry END_RENDEZVOUS.
The consumer is 10 [MARX ]. The server is 6§ [FORKS].

esTRC** call of monitor entry CALLING.
The consumer is 10 [MARX ]. The server is 6 [FORKS]. The entry is [PUTDO].

*oTRC** cal) of monitor entry ACCEPTING.
The server is § [FORKS]. The entry is [PICKU].

eoTRC*® call of monitor entry START_RENDEZVOUS.
The consumer is 10 [MARX ]. The server is 6 [FORKS]. The entry is [PUTDO].

ssTRC*® call of monitor entry END_RENDEZVOUS.
The consumer is 10 [MARX ]. The server is 6 [FORKS].

seTRC** call of monitor entry CALLING.
The consumer is 10 [MARX ]. The server is 1 [TABLE]. The entry is [GETUP].

ssTRC** call of monitor entry ACCEPTING.
The server is 6 [FORKS]. The entry is [PICKU].

**TRC** call of monitor entry START_RENDEZVOUS.
The consumer 1s 9 [ARIST]. The server is 6 [FORKS]. The entry is [PICKU].

-- ARISTOTLE gets his righthand fork and starts eating.

*sTRC** call of monitor entry START_RENDEZVOUS.
The consumer is 10 [MARX ]. The server is 1 [TABLE]. The entry is [GETUP].

== Now MARX has left the table.

The trace output continues on indefinitely.
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